| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > marsdenlem1 | GIF version | ||
| Description: Lemma for Marsden-Herman distributive law. (Contributed by NM, 26-Feb-2002.) |
| Ref | Expression |
|---|---|
| marsden.1 | a C b |
| marsden.2 | b C c |
| marsden.3 | c C d |
| marsden.4 | d C a |
| Ref | Expression |
|---|---|
| marsdenlem1 | ((a ∪ b) ∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∩ (a ∪ b)) ∪ (d⊥ ∩ (a ∪ b))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 | . 2 ((a ∪ b) ∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∪ d⊥ ) ∩ (a ∪ b)) | |
| 2 | comorr 184 | . . . 4 a C (a ∪ b) | |
| 3 | 2 | comcom3 454 | . . 3 a⊥ C (a ∪ b) |
| 4 | marsden.4 | . . . . 5 d C a | |
| 5 | 4 | comcom4 455 | . . . 4 d⊥ C a⊥ |
| 6 | 5 | comcom 453 | . . 3 a⊥ C d⊥ |
| 7 | 3, 6 | fh2r 474 | . 2 ((a⊥ ∪ d⊥ ) ∩ (a ∪ b)) = ((a⊥ ∩ (a ∪ b)) ∪ (d⊥ ∩ (a ∪ b))) |
| 8 | 1, 7 | ax-r2 36 | 1 ((a ∪ b) ∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∩ (a ∪ b)) ∪ (d⊥ ∩ (a ∪ b))) |
| Colors of variables: term |
| Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |