Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > marsdenlem1 | GIF version |
Description: Lemma for Marsden-Herman distributive law. (Contributed by NM, 26-Feb-2002.) |
Ref | Expression |
---|---|
marsden.1 | a C b |
marsden.2 | b C c |
marsden.3 | c C d |
marsden.4 | d C a |
Ref | Expression |
---|---|
marsdenlem1 | ((a ∪ b) ∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∩ (a ∪ b)) ∪ (d⊥ ∩ (a ∪ b))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . 2 ((a ∪ b) ∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∪ d⊥ ) ∩ (a ∪ b)) | |
2 | comorr 184 | . . . 4 a C (a ∪ b) | |
3 | 2 | comcom3 454 | . . 3 a⊥ C (a ∪ b) |
4 | marsden.4 | . . . . 5 d C a | |
5 | 4 | comcom4 455 | . . . 4 d⊥ C a⊥ |
6 | 5 | comcom 453 | . . 3 a⊥ C d⊥ |
7 | 3, 6 | fh2r 474 | . 2 ((a⊥ ∪ d⊥ ) ∩ (a ∪ b)) = ((a⊥ ∩ (a ∪ b)) ∪ (d⊥ ∩ (a ∪ b))) |
8 | 1, 7 | ax-r2 36 | 1 ((a ∪ b) ∩ (a⊥ ∪ d⊥ )) = ((a⊥ ∩ (a ∪ b)) ∪ (d⊥ ∩ (a ∪ b))) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |