Proof of Theorem marsdenlem2
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. 2
((c ∪ d) ∩ (b⊥ ∪ c⊥ )) = ((b⊥ ∪ c⊥ ) ∩ (c ∪ d)) |
2 | | comorr 184 |
. . . 4
c C (c ∪ d) |
3 | 2 | comcom3 454 |
. . 3
c⊥ C
(c ∪ d) |
4 | | marsden.2 |
. . . . 5
b C c |
5 | 4 | comcom4 455 |
. . . 4
b⊥ C
c⊥ |
6 | 5 | comcom 453 |
. . 3
c⊥ C
b⊥ |
7 | 3, 6 | fh2rc 480 |
. 2
((b⊥ ∪ c⊥ ) ∩ (c ∪ d)) =
((b⊥ ∩ (c ∪ d))
∪ (c⊥ ∩ (c ∪ d))) |
8 | 6 | comcom6 459 |
. . . . 5
c C b⊥ |
9 | | marsden.3 |
. . . . 5
c C d |
10 | 8, 9 | fh2 470 |
. . . 4
(b⊥ ∩ (c ∪ d)) =
((b⊥ ∩ c) ∪ (b⊥ ∩ d)) |
11 | | comid 187 |
. . . . . . 7
c C c |
12 | 11 | comcom2 183 |
. . . . . 6
c C c⊥ |
13 | 12, 9 | fh2 470 |
. . . . 5
(c⊥ ∩ (c ∪ d)) =
((c⊥ ∩ c) ∪ (c⊥ ∩ d)) |
14 | | dff 101 |
. . . . . . . 8
0 = (c ∩ c⊥ ) |
15 | | ancom 74 |
. . . . . . . 8
(c ∩ c⊥ ) = (c⊥ ∩ c) |
16 | 14, 15 | ax-r2 36 |
. . . . . . 7
0 = (c⊥ ∩
c) |
17 | 16 | ax-r5 38 |
. . . . . 6
(0 ∪ (c⊥ ∩
d)) = ((c⊥ ∩ c) ∪ (c⊥ ∩ d)) |
18 | 17 | ax-r1 35 |
. . . . 5
((c⊥ ∩ c) ∪ (c⊥ ∩ d)) = (0 ∪ (c⊥ ∩ d)) |
19 | | or0r 103 |
. . . . 5
(0 ∪ (c⊥ ∩
d)) = (c⊥ ∩ d) |
20 | 13, 18, 19 | 3tr 65 |
. . . 4
(c⊥ ∩ (c ∪ d)) =
(c⊥ ∩ d) |
21 | 10, 20 | 2or 72 |
. . 3
((b⊥ ∩
(c ∪ d)) ∪ (c⊥ ∩ (c ∪ d))) =
(((b⊥ ∩ c) ∪ (b⊥ ∩ d)) ∪ (c⊥ ∩ d)) |
22 | | or32 82 |
. . 3
(((b⊥ ∩
c) ∪ (b⊥ ∩ d)) ∪ (c⊥ ∩ d)) = (((b⊥ ∩ c) ∪ (c⊥ ∩ d)) ∪ (b⊥ ∩ d)) |
23 | 21, 22 | ax-r2 36 |
. 2
((b⊥ ∩
(c ∪ d)) ∪ (c⊥ ∩ (c ∪ d))) =
(((b⊥ ∩ c) ∪ (c⊥ ∩ d)) ∪ (b⊥ ∩ d)) |
24 | 1, 7, 23 | 3tr 65 |
1
((c ∪ d) ∩ (b⊥ ∪ c⊥ )) = (((b⊥ ∩ c) ∪ (c⊥ ∩ d)) ∪ (b⊥ ∩ d)) |