Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comorr | GIF version |
Description: Commutation law. Does not use OML. (Contributed by NM, 30-Aug-1997.) |
Ref | Expression |
---|---|
comorr | a C (a ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . 2 a ≤ (a ∪ b) | |
2 | 1 | lecom 180 | 1 a C (a ∪ b) |
Colors of variables: term |
Syntax hints: C wc 3 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 df-c1 132 |
This theorem is referenced by: comid 187 comor1 461 nbdi 486 df2i3 498 i3lem1 504 i3con 551 ud1lem1 560 ud1lem3 562 ud3lem1c 568 ud3lem2 571 ud3lem3 576 ud4lem1c 579 ud4lem1 581 ud4lem2 582 ud5lem3b 592 ud5lem3 594 u3lemaa 602 u3lemana 607 u4lem1 737 u3lem10 785 u3lem13a 789 u3lem13b 790 i1abs 801 3vth5 808 mhlem1 877 marsdenlem1 880 marsdenlem2 881 oau 929 oa23 936 lem4.6.2e1 1082 |
Copyright terms: Public domain | W3C validator |