Proof of Theorem oml4
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . 3
((a ≡ b) ∩ a) =
(a ∩ (a ≡ b)) |
2 | | dfb 94 |
. . . . 5
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
3 | 2 | lan 77 |
. . . 4
(a ∩ (a ≡ b)) =
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
4 | | coman1 185 |
. . . . . . 7
(a ∩ b) C a |
5 | 4 | comcom 453 |
. . . . . 6
a C (a ∩ b) |
6 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C a⊥ |
7 | 6 | comcom 453 |
. . . . . . . 8
a⊥ C
(a⊥ ∩ b⊥ ) |
8 | 7 | comcom2 183 |
. . . . . . 7
a⊥ C
(a⊥ ∩ b⊥
)⊥ |
9 | 8 | comcom5 458 |
. . . . . 6
a C (a⊥ ∩ b⊥ ) |
10 | 5, 9 | fh1 469 |
. . . . 5
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = ((a ∩ (a ∩
b)) ∪ (a ∩ (a⊥ ∩ b⊥ ))) |
11 | | or0 102 |
. . . . . 6
((a ∩ b) ∪ 0) = (a
∩ b) |
12 | | anidm 111 |
. . . . . . . . . 10
(a ∩ a) = a |
13 | 12 | ran 78 |
. . . . . . . . 9
((a ∩ a) ∩ b) =
(a ∩ b) |
14 | 13 | ax-r1 35 |
. . . . . . . 8
(a ∩ b) = ((a ∩
a) ∩ b) |
15 | | anass 76 |
. . . . . . . 8
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
16 | 14, 15 | ax-r2 36 |
. . . . . . 7
(a ∩ b) = (a ∩
(a ∩ b)) |
17 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ 0) = (0
∩ b⊥
) |
18 | | an0 108 |
. . . . . . . . 9
(b⊥ ∩ 0) =
0 |
19 | | dff 101 |
. . . . . . . . . 10
0 = (a ∩ a⊥ ) |
20 | 19 | ran 78 |
. . . . . . . . 9
(0 ∩ b⊥ ) =
((a ∩ a⊥ ) ∩ b⊥ ) |
21 | 17, 18, 20 | 3tr2 64 |
. . . . . . . 8
0 = ((a ∩ a⊥ ) ∩ b⊥ ) |
22 | | anass 76 |
. . . . . . . 8
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
23 | 21, 22 | ax-r2 36 |
. . . . . . 7
0 = (a ∩ (a⊥ ∩ b⊥ )) |
24 | 16, 23 | 2or 72 |
. . . . . 6
((a ∩ b) ∪ 0) = ((a ∩ (a ∩
b)) ∪ (a ∩ (a⊥ ∩ b⊥ ))) |
25 | | ancom 74 |
. . . . . 6
(a ∩ b) = (b ∩
a) |
26 | 11, 24, 25 | 3tr2 64 |
. . . . 5
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b⊥ ))) = (b ∩ a) |
27 | 10, 26 | ax-r2 36 |
. . . 4
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = (b ∩ a) |
28 | 3, 27 | ax-r2 36 |
. . 3
(a ∩ (a ≡ b)) =
(b ∩ a) |
29 | 1, 28 | ax-r2 36 |
. 2
((a ≡ b) ∩ a) =
(b ∩ a) |
30 | | lea 160 |
. 2
(b ∩ a) ≤ b |
31 | 29, 30 | bltr 138 |
1
((a ≡ b) ∩ a) ≤
b |