Proof of Theorem dfnb
Step | Hyp | Ref
| Expression |
1 | | oran 87 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ |
2 | 1 | con2 67 |
. . 3
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ =
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥
) |
3 | | ancom 74 |
. . 3
((a ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ b)⊥ ) |
4 | 2, 3 | ax-r2 36 |
. 2
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ =
((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ b)⊥ ) |
5 | | dfb 94 |
. . 3
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
6 | 5 | ax-r4 37 |
. 2
(a ≡ b)⊥ = ((a ∩ b) ∪
(a⊥ ∩ b⊥
))⊥ |
7 | | oran 87 |
. . 3
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
8 | | df-a 40 |
. . . . 5
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
9 | 8 | con2 67 |
. . . 4
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
10 | 9 | ax-r1 35 |
. . 3
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
11 | 7, 10 | 2an 79 |
. 2
((a ∪ b) ∩ (a⊥ ∪ b⊥ )) = ((a⊥ ∩ b⊥ )⊥ ∩
(a ∩ b)⊥ ) |
12 | 4, 6, 11 | 3tr1 63 |
1
(a ≡ b)⊥ = ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |