Proof of Theorem u3lemab
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | 1 | ran 78 |
. 2
((a →3 b) ∩ b) =
((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ b) |
3 | | comanr2 465 |
. . . . . 6
b C (a⊥ ∩ b) |
4 | | comanr2 465 |
. . . . . . 7
b⊥ C
(a⊥ ∩ b⊥ ) |
5 | 4 | comcom6 459 |
. . . . . 6
b C (a⊥ ∩ b⊥ ) |
6 | 3, 5 | com2or 483 |
. . . . 5
b C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
7 | 6 | comcom 453 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) C b |
8 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b) C a⊥ |
9 | 8 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b) C a |
10 | | coman2 186 |
. . . . . . . . 9
(a⊥ ∩ b) C b |
11 | 8, 10 | com2or 483 |
. . . . . . . 8
(a⊥ ∩ b) C (a⊥ ∪ b) |
12 | 9, 11 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a
∩ (a⊥ ∪ b)) |
13 | 12 | comcom 453 |
. . . . . 6
(a ∩ (a⊥ ∪ b)) C (a⊥ ∩ b) |
14 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C a⊥ |
15 | 14 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C a |
16 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) C b⊥ |
17 | 16 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) C b |
18 | 14, 17 | com2or 483 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C (a⊥ ∪ b) |
19 | 15, 18 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C (a ∩ (a⊥ ∪ b)) |
20 | 19 | comcom 453 |
. . . . . 6
(a ∩ (a⊥ ∪ b)) C (a⊥ ∩ b⊥ ) |
21 | 13, 20 | com2or 483 |
. . . . 5
(a ∩ (a⊥ ∪ b)) C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
22 | 21 | comcom 453 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) C (a ∩ (a⊥ ∪ b)) |
23 | 7, 22 | fh2r 474 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ b) =
((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ b) ∪ ((a
∩ (a⊥ ∪ b)) ∩ b)) |
24 | 3, 5 | fh1r 473 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b) = (((a⊥ ∩ b) ∩ b)
∪ ((a⊥ ∩ b⊥ ) ∩ b)) |
25 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ b) =
(a⊥ ∩ (b ∩ b)) |
26 | | anidm 111 |
. . . . . . . . . 10
(b ∩ b) = b |
27 | 26 | lan 77 |
. . . . . . . . 9
(a⊥ ∩ (b ∩ b)) =
(a⊥ ∩ b) |
28 | 25, 27 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ b) =
(a⊥ ∩ b) |
29 | | an32 83 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ b) = ((a⊥ ∩ b) ∩ b⊥ ) |
30 | | anass 76 |
. . . . . . . . . 10
((a⊥ ∩ b) ∩ b⊥ ) = (a⊥ ∩ (b ∩ b⊥ )) |
31 | | dff 101 |
. . . . . . . . . . . . 13
0 = (b ∩ b⊥ ) |
32 | 31 | ax-r1 35 |
. . . . . . . . . . . 12
(b ∩ b⊥ ) = 0 |
33 | 32 | lan 77 |
. . . . . . . . . . 11
(a⊥ ∩ (b ∩ b⊥ )) = (a⊥ ∩ 0) |
34 | | an0 108 |
. . . . . . . . . . 11
(a⊥ ∩ 0) =
0 |
35 | 33, 34 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩ (b ∩ b⊥ )) = 0 |
36 | 30, 35 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ b⊥ ) = 0 |
37 | 29, 36 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ b) = 0 |
38 | 28, 37 | 2or 72 |
. . . . . . 7
(((a⊥ ∩
b) ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∩ b)) = ((a⊥ ∩ b) ∪ 0) |
39 | | or0 102 |
. . . . . . 7
((a⊥ ∩ b) ∪ 0) = (a⊥ ∩ b) |
40 | 38, 39 | ax-r2 36 |
. . . . . 6
(((a⊥ ∩
b) ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∩ b)) = (a⊥ ∩ b) |
41 | 24, 40 | ax-r2 36 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b) = (a⊥ ∩ b) |
42 | | anass 76 |
. . . . . 6
((a ∩ (a⊥ ∪ b)) ∩ b) =
(a ∩ ((a⊥ ∪ b) ∩ b)) |
43 | | ancom 74 |
. . . . . . . 8
((a⊥ ∪ b) ∩ b) =
(b ∩ (a⊥ ∪ b)) |
44 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪ b) = (b ∪
a⊥ ) |
45 | 44 | lan 77 |
. . . . . . . . 9
(b ∩ (a⊥ ∪ b)) = (b ∩
(b ∪ a⊥ )) |
46 | | anabs 121 |
. . . . . . . . 9
(b ∩ (b ∪ a⊥ )) = b |
47 | 45, 46 | ax-r2 36 |
. . . . . . . 8
(b ∩ (a⊥ ∪ b)) = b |
48 | 43, 47 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b) ∩ b) =
b |
49 | 48 | lan 77 |
. . . . . 6
(a ∩ ((a⊥ ∪ b) ∩ b)) =
(a ∩ b) |
50 | 42, 49 | ax-r2 36 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∩ b) =
(a ∩ b) |
51 | 41, 50 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b) ∪ ((a
∩ (a⊥ ∪ b)) ∩ b)) =
((a⊥ ∩ b) ∪ (a
∩ b)) |
52 | | ax-a2 31 |
. . . 4
((a⊥ ∩ b) ∪ (a
∩ b)) = ((a ∩ b) ∪
(a⊥ ∩ b)) |
53 | 51, 52 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ b) ∪ ((a
∩ (a⊥ ∪ b)) ∩ b)) =
((a ∩ b) ∪ (a⊥ ∩ b)) |
54 | 23, 53 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ b) =
((a ∩ b) ∪ (a⊥ ∩ b)) |
55 | 2, 54 | ax-r2 36 |
1
((a →3 b) ∩ b) =
((a ∩ b) ∪ (a⊥ ∩ b)) |