Proof of Theorem nom21
| Step | Hyp | Ref
| Expression |
| 1 | | ancom 74 |
. . 3
((a⊥ ∪
(a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b))) =
((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∪ (a ∪ b⊥ ))) |
| 2 | | or12 80 |
. . . . 5
(a⊥ ∪ (a ∪ b⊥ )) = (a ∪ (a⊥ ∪ b⊥ )) |
| 3 | | oran3 93 |
. . . . . 6
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
| 4 | 3 | lor 70 |
. . . . 5
(a ∪ (a⊥ ∪ b⊥ )) = (a ∪ (a ∩
b)⊥ ) |
| 5 | 2, 4 | ax-r2 36 |
. . . 4
(a⊥ ∪ (a ∪ b⊥ )) = (a ∪ (a ∩
b)⊥ ) |
| 6 | | anidm 111 |
. . . . . . . 8
(a ∩ a) = a |
| 7 | 6 | ran 78 |
. . . . . . 7
((a ∩ a) ∩ b) =
(a ∩ b) |
| 8 | 7 | ax-r1 35 |
. . . . . 6
(a ∩ b) = ((a ∩
a) ∩ b) |
| 9 | | anass 76 |
. . . . . 6
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
| 10 | 8, 9 | ax-r2 36 |
. . . . 5
(a ∩ b) = (a ∩
(a ∩ b)) |
| 11 | 10 | lor 70 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ (a ∩ (a ∩
b))) |
| 12 | 5, 11 | 2an 79 |
. . 3
((a⊥ ∪
(a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b))) =
((a ∪ (a ∩ b)⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
| 13 | | lea 160 |
. . . . . 6
(a ∩ b) ≤ a |
| 14 | | leo 158 |
. . . . . 6
a ≤ (a ∪ b⊥ ) |
| 15 | 13, 14 | letr 137 |
. . . . 5
(a ∩ b) ≤ (a ∪
b⊥ ) |
| 16 | 15 | lelor 166 |
. . . 4
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∪ b⊥ )) |
| 17 | 16 | df2le2 136 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ∪ (a ∪ b⊥ ))) = (a⊥ ∪ (a ∩ b)) |
| 18 | 1, 12, 17 | 3tr2 64 |
. 2
((a ∪ (a ∩ b)⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = (a⊥ ∪ (a ∩ b)) |
| 19 | | df-id1 50 |
. 2
(a ≡1 (a ∩ b)) =
((a ∪ (a ∩ b)⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
| 20 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 21 | 18, 19, 20 | 3tr1 63 |
1
(a ≡1 (a ∩ b)) =
(a →1 b) |