Proof of Theorem oa3-u2lem
Step | Hyp | Ref
| Expression |
1 | | u1lemab 610 |
. . . . . . 7
((a⊥ →1
c) ∩ c) = ((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) |
2 | | an1 106 |
. . . . . . 7
((a →1 c) ∩ 1) = (a
→1 c) |
3 | 1, 2 | 2or 72 |
. . . . . 6
(((a⊥ →1
c) ∩ c) ∪ ((a
→1 c) ∩ 1)) =
(((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) ∪ (a →1 c)) |
4 | | lea 160 |
. . . . . . . . 9
(a⊥ ∩ c) ≤ a⊥ |
5 | | ax-a1 30 |
. . . . . . . . . . . 12
a = a⊥
⊥ |
6 | 5 | ax-r1 35 |
. . . . . . . . . . 11
a⊥
⊥ = a |
7 | | leid 148 |
. . . . . . . . . . 11
a ≤ a |
8 | 6, 7 | bltr 138 |
. . . . . . . . . 10
a⊥
⊥ ≤ a |
9 | 8 | leran 153 |
. . . . . . . . 9
(a⊥
⊥ ∩ c) ≤ (a ∩ c) |
10 | 4, 9 | le2or 168 |
. . . . . . . 8
((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) ≤ (a⊥ ∪ (a ∩ c)) |
11 | | df-i1 44 |
. . . . . . . . 9
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
12 | 11 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ (a ∩ c)) =
(a →1 c) |
13 | 10, 12 | lbtr 139 |
. . . . . . 7
((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) ≤ (a →1 c) |
14 | 13 | df-le2 131 |
. . . . . 6
(((a⊥ ∩
c) ∪ (a⊥ ⊥ ∩
c)) ∪ (a →1 c)) = (a
→1 c) |
15 | 3, 14 | ax-r2 36 |
. . . . 5
(((a⊥ →1
c) ∩ c) ∪ ((a
→1 c) ∩ 1)) = (a →1 c) |
16 | | ancom 74 |
. . . . . 6
((((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c)))) = (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))) |
17 | | ancom 74 |
. . . . . . . . . 10
(c ∩ (b⊥ →1 c)) = ((b⊥ →1 c) ∩ c) |
18 | | u1lemab 610 |
. . . . . . . . . 10
((b⊥ →1
c) ∩ c) = ((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) |
19 | 17, 18 | ax-r2 36 |
. . . . . . . . 9
(c ∩ (b⊥ →1 c)) = ((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) |
20 | | ancom 74 |
. . . . . . . . . 10
(1 ∩ (b →1
c)) = ((b →1 c) ∩ 1) |
21 | | an1 106 |
. . . . . . . . . 10
((b →1 c) ∩ 1) = (b
→1 c) |
22 | 20, 21 | ax-r2 36 |
. . . . . . . . 9
(1 ∩ (b →1
c)) = (b →1 c) |
23 | 19, 22 | 2or 72 |
. . . . . . . 8
((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) = (((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) ∪ (b →1 c)) |
24 | | lea 160 |
. . . . . . . . . . 11
(b⊥ ∩ c) ≤ b⊥ |
25 | | ax-a1 30 |
. . . . . . . . . . . . . 14
b = b⊥
⊥ |
26 | 25 | ax-r1 35 |
. . . . . . . . . . . . 13
b⊥
⊥ = b |
27 | | leid 148 |
. . . . . . . . . . . . 13
b ≤ b |
28 | 26, 27 | bltr 138 |
. . . . . . . . . . . 12
b⊥
⊥ ≤ b |
29 | 28 | leran 153 |
. . . . . . . . . . 11
(b⊥
⊥ ∩ c) ≤ (b ∩ c) |
30 | 24, 29 | le2or 168 |
. . . . . . . . . 10
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) ≤ (b⊥ ∪ (b ∩ c)) |
31 | | df-i1 44 |
. . . . . . . . . . 11
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
32 | 31 | ax-r1 35 |
. . . . . . . . . 10
(b⊥ ∪ (b ∩ c)) =
(b →1 c) |
33 | 30, 32 | lbtr 139 |
. . . . . . . . 9
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) ≤ (b →1 c) |
34 | 33 | df-le2 131 |
. . . . . . . 8
(((b⊥ ∩
c) ∪ (b⊥ ⊥ ∩
c)) ∪ (b →1 c)) = (b
→1 c) |
35 | 23, 34 | ax-r2 36 |
. . . . . . 7
((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) = (b
→1 c) |
36 | | ax-a2 31 |
. . . . . . 7
(((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) = (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))) |
37 | 35, 36 | 2an 79 |
. . . . . 6
(((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))) = ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) |
38 | 16, 37 | ax-r2 36 |
. . . . 5
((((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c)))) = ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) |
39 | 15, 38 | 2or 72 |
. . . 4
((((a⊥ →1
c) ∩ c) ∪ ((a
→1 c) ∩ 1)) ∪
((((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))))) = ((a
→1 c) ∪ ((b →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))) |
40 | 39 | lan 77 |
. . 3
(c ∩ ((((a⊥ →1 c) ∩ c)
∪ ((a →1 c) ∩ 1)) ∪ ((((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c)))))) = (c
∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) |
41 | 40 | lor 70 |
. 2
((a⊥ →1
c) ∪ (c ∩ ((((a⊥ →1 c) ∩ c)
∪ ((a →1 c) ∩ 1)) ∪ ((((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))))))) = ((a⊥ →1 c) ∪ (c
∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) |
42 | 41 | lan 77 |
1
((a →1 c) ∩ ((a⊥ →1 c) ∪ (c
∩ ((((a⊥ →1
c) ∩ c) ∪ ((a
→1 c) ∩ 1)) ∪
((((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c)))))))) = ((a
→1 c) ∩ ((a⊥ →1 c) ∪ (c
∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))))) |