Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anandi | GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
anandi | (a ∩ (b ∩ c)) = ((a ∩ b) ∩ (a ∩ c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 111 | . . . 4 (a ∩ a) = a | |
2 | 1 | ax-r1 35 | . . 3 a = (a ∩ a) |
3 | 2 | ran 78 | . 2 (a ∩ (b ∩ c)) = ((a ∩ a) ∩ (b ∩ c)) |
4 | an4 86 | . 2 ((a ∩ a) ∩ (b ∩ c)) = ((a ∩ b) ∩ (a ∩ c)) | |
5 | 3, 4 | ax-r2 36 | 1 (a ∩ (b ∩ c)) = ((a ∩ b) ∩ (a ∩ c)) |
Colors of variables: term |
Syntax hints: = wb 1 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: wwfh1 216 wdf-c2 384 wfh1 423 fh1 469 i3bi 496 u5lembi 725 u3lem13b 790 3vth9 812 mlaoml 833 comanblem1 870 oa3moa3 1029 |
Copyright terms: Public domain | W3C validator |