Proof of Theorem oalem1
| Step | Hyp | Ref
| Expression |
| 1 | | anidm 111 |
. . . . . . . . 9
(b⊥ ∩ b⊥ ) = b⊥ |
| 2 | 1 | ran 78 |
. . . . . . . 8
((b⊥ ∩ b⊥ ) ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
| 3 | 2 | ax-r1 35 |
. . . . . . 7
(b⊥ ∩ c⊥ ) = ((b⊥ ∩ b⊥ ) ∩ c⊥ ) |
| 4 | | anor3 90 |
. . . . . . 7
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 5 | | an32 83 |
. . . . . . . 8
((b⊥ ∩ b⊥ ) ∩ c⊥ ) = ((b⊥ ∩ c⊥ ) ∩ b⊥ ) |
| 6 | 4 | ran 78 |
. . . . . . . 8
((b⊥ ∩ c⊥ ) ∩ b⊥ ) = ((b ∪ c)⊥ ∩ b⊥ ) |
| 7 | 5, 6 | ax-r2 36 |
. . . . . . 7
((b⊥ ∩ b⊥ ) ∩ c⊥ ) = ((b ∪ c)⊥ ∩ b⊥ ) |
| 8 | 3, 4, 7 | 3tr2 64 |
. . . . . 6
(b ∪ c)⊥ = ((b ∪ c)⊥ ∩ b⊥ ) |
| 9 | 8 | ran 78 |
. . . . 5
((b ∪ c)⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) = (((b ∪ c)⊥ ∩ b⊥ ) ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) |
| 10 | | anass 76 |
. . . . . 6
(((b ∪ c)⊥ ∩ b⊥ ) ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) = ((b ∪ c)⊥ ∩ (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))) |
| 11 | | oalii 1002 |
. . . . . . 7
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ a⊥ |
| 12 | 11 | lelan 167 |
. . . . . 6
((b ∪ c)⊥ ∩ (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))) ≤ ((b ∪ c)⊥ ∩ a⊥ ) |
| 13 | 10, 12 | bltr 138 |
. . . . 5
(((b ∪ c)⊥ ∩ b⊥ ) ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ ((b ∪ c)⊥ ∩ a⊥ ) |
| 14 | 9, 13 | bltr 138 |
. . . 4
((b ∪ c)⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ ((b ∪ c)⊥ ∩ a⊥ ) |
| 15 | | ancom 74 |
. . . 4
((b ∪ c)⊥ ∩ a⊥ ) = (a⊥ ∩ (b ∪ c)⊥ ) |
| 16 | 14, 15 | lbtr 139 |
. . 3
((b ∪ c)⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ (a⊥ ∩ (b ∪ c)⊥ ) |
| 17 | 16 | lelor 166 |
. 2
((b ∪ c) ∪ ((b
∪ c)⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))) ≤ ((b ∪ c) ∪
(a⊥ ∩ (b ∪ c)⊥ )) |
| 18 | | df-i2 45 |
. . 3
(a →2 (b ∪ c)) =
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
| 19 | 18 | ax-r1 35 |
. 2
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = (a →2 (b ∪ c)) |
| 20 | 17, 19 | lbtr 139 |
1
((b ∪ c) ∪ ((b
∪ c)⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))) ≤ (a →2 (b ∪ c)) |