Proof of Theorem u1lembi
| Step | Hyp | Ref
| Expression |
| 1 | | ax-a2 31 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
| 2 | | ax-a2 31 |
. . . 4
(b⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ b⊥ ) |
| 3 | 1, 2 | 2an 79 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ (b⊥ ∪ (a ∩ b))) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
b⊥ )) |
| 4 | | coman1 185 |
. . . . . 6
(a ∩ b) C a |
| 5 | 4 | comcom2 183 |
. . . . 5
(a ∩ b) C a⊥ |
| 6 | | coman2 186 |
. . . . . 6
(a ∩ b) C b |
| 7 | 6 | comcom2 183 |
. . . . 5
(a ∩ b) C b⊥ |
| 8 | 5, 7 | fh3 471 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b) ∪
b⊥ )) |
| 9 | 8 | ax-r1 35 |
. . 3
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
b⊥ )) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
| 10 | 3, 9 | ax-r2 36 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ (b⊥ ∪ (a ∩ b))) =
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 11 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 12 | | df-i1 44 |
. . . 4
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
| 13 | | ancom 74 |
. . . . 5
(b ∩ a) = (a ∩
b) |
| 14 | 13 | lor 70 |
. . . 4
(b⊥ ∪ (b ∩ a)) =
(b⊥ ∪ (a ∩ b)) |
| 15 | 12, 14 | ax-r2 36 |
. . 3
(b →1 a) = (b⊥ ∪ (a ∩ b)) |
| 16 | 11, 15 | 2an 79 |
. 2
((a →1 b) ∩ (b
→1 a)) = ((a⊥ ∪ (a ∩ b))
∩ (b⊥ ∪ (a ∩ b))) |
| 17 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
| 18 | 10, 16, 17 | 3tr1 63 |
1
((a →1 b) ∩ (b
→1 a)) = (a ≡ b) |