Proof of Theorem u1lemc4
| Step | Hyp | Ref
| Expression |
| 1 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 2 | | comid 187 |
. . . . 5
a C a |
| 3 | 2 | comcom2 183 |
. . . 4
a C a⊥ |
| 4 | | ulemc3.1 |
. . . 4
a C b |
| 5 | 3, 4 | fh4 472 |
. . 3
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) |
| 6 | | ancom 74 |
. . . 4
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a⊥ ∪ a)) |
| 7 | | ax-a2 31 |
. . . . . . 7
(a⊥ ∪ a) = (a ∪
a⊥ ) |
| 8 | | df-t 41 |
. . . . . . . 8
1 = (a ∪ a⊥ ) |
| 9 | 8 | ax-r1 35 |
. . . . . . 7
(a ∪ a⊥ ) = 1 |
| 10 | 7, 9 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ a) = 1 |
| 11 | 10 | lan 77 |
. . . . 5
((a⊥ ∪ b) ∩ (a⊥ ∪ a)) = ((a⊥ ∪ b) ∩ 1) |
| 12 | | an1 106 |
. . . . 5
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
| 13 | 11, 12 | ax-r2 36 |
. . . 4
((a⊥ ∪ b) ∩ (a⊥ ∪ a)) = (a⊥ ∪ b) |
| 14 | 6, 13 | ax-r2 36 |
. . 3
((a⊥ ∪ a) ∩ (a⊥ ∪ b)) = (a⊥ ∪ b) |
| 15 | 5, 14 | ax-r2 36 |
. 2
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ b) |
| 16 | 1, 15 | ax-r2 36 |
1
(a →1 b) = (a⊥ ∪ b) |