Proof of Theorem u2lemaa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →2 b) ∩ a) =
((b ∪ (a⊥ ∩ b⊥ )) ∩ a) |
| 3 | | ax-a2 31 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
| 4 | 3 | ran 78 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∩ a) = (((a⊥ ∩ b⊥ ) ∪ b) ∩ a) |
| 5 | | coman1 185 |
. . . . . 6
(a⊥ ∩ b⊥ ) C a⊥ |
| 6 | 5 | comcom7 460 |
. . . . 5
(a⊥ ∩ b⊥ ) C a |
| 7 | | coman2 186 |
. . . . . 6
(a⊥ ∩ b⊥ ) C b⊥ |
| 8 | 7 | comcom7 460 |
. . . . 5
(a⊥ ∩ b⊥ ) C b |
| 9 | 6, 8 | fh2r 474 |
. . . 4
(((a⊥ ∩
b⊥ ) ∪ b) ∩ a) =
(((a⊥ ∩ b⊥ ) ∩ a) ∪ (b
∩ a)) |
| 10 | | ax-a2 31 |
. . . . 5
(((a⊥ ∩
b⊥ ) ∩ a) ∪ (b
∩ a)) = ((b ∩ a) ∪
((a⊥ ∩ b⊥ ) ∩ a)) |
| 11 | | ancom 74 |
. . . . . . 7
(b ∩ a) = (a ∩
b) |
| 12 | | ancom 74 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ a) = (a ∩
(a⊥ ∩ b⊥ )) |
| 13 | | anass 76 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
| 14 | 13 | ax-r1 35 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ b⊥ ) |
| 15 | | ancom 74 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
| 16 | | dff 101 |
. . . . . . . . . . . . 13
0 = (a ∩ a⊥ ) |
| 17 | 16 | ax-r1 35 |
. . . . . . . . . . . 12
(a ∩ a⊥ ) = 0 |
| 18 | 17 | lan 77 |
. . . . . . . . . . 11
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
| 19 | | an0 108 |
. . . . . . . . . . 11
(b⊥ ∩ 0) =
0 |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . . 10
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
| 21 | 15, 20 | ax-r2 36 |
. . . . . . . . 9
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
| 22 | 14, 21 | ax-r2 36 |
. . . . . . . 8
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
| 23 | 12, 22 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ a) = 0 |
| 24 | 11, 23 | 2or 72 |
. . . . . 6
((b ∩ a) ∪ ((a⊥ ∩ b⊥ ) ∩ a)) = ((a ∩
b) ∪ 0) |
| 25 | | or0 102 |
. . . . . 6
((a ∩ b) ∪ 0) = (a
∩ b) |
| 26 | 24, 25 | ax-r2 36 |
. . . . 5
((b ∩ a) ∪ ((a⊥ ∩ b⊥ ) ∩ a)) = (a ∩
b) |
| 27 | 10, 26 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b⊥ ) ∩ a) ∪ (b
∩ a)) = (a ∩ b) |
| 28 | 9, 27 | ax-r2 36 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ b) ∩ a) =
(a ∩ b) |
| 29 | 4, 28 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∩ a) = (a ∩
b) |
| 30 | 2, 29 | ax-r2 36 |
1
((a →2 b) ∩ a) =
(a ∩ b) |