Proof of Theorem bi3
Step | Hyp | Ref
| Expression |
1 | | dfb 94 |
. . 3
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
2 | | u12lembi 726 |
. . . 4
((b →1 c) ∩ (c
→2 b)) = (b ≡ c) |
3 | 2 | ax-r1 35 |
. . 3
(b ≡ c) = ((b
→1 c) ∩ (c →2 b)) |
4 | 1, 3 | 2an 79 |
. 2
((a ≡ b) ∩ (b
≡ c)) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∩ ((b →1 c) ∩ (c
→2 b))) |
5 | | df-i1 44 |
. . . . . 6
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
6 | 5 | lan 77 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (b →1 c)) = (((a ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∪ (b ∩ c))) |
7 | | lear 161 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ b⊥ |
8 | | leo 158 |
. . . . . . . 8
b⊥ ≤ (b⊥ ∪ (b ∩ c)) |
9 | 7, 8 | letr 137 |
. . . . . . 7
(a⊥ ∩ b⊥ ) ≤ (b⊥ ∪ (b ∩ c)) |
10 | 9 | lecom 180 |
. . . . . 6
(a⊥ ∩ b⊥ ) C (b⊥ ∪ (b ∩ c)) |
11 | | coman1 185 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C a⊥ |
12 | 11 | comcom7 460 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C a |
13 | | coman2 186 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) C b⊥ |
14 | 13 | comcom7 460 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C b |
15 | 12, 14 | com2an 484 |
. . . . . 6
(a⊥ ∩ b⊥ ) C (a ∩ b) |
16 | 10, 15 | fh2rc 480 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∪ (b ∩ c))) =
(((a ∩ b) ∩ (b⊥ ∪ (b ∩ c)))
∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c)))) |
17 | | comanr2 465 |
. . . . . . . . 9
b C (a ∩ b) |
18 | 17 | comcom3 454 |
. . . . . . . 8
b⊥ C
(a ∩ b) |
19 | | comanr1 464 |
. . . . . . . . 9
b C (b ∩ c) |
20 | 19 | comcom3 454 |
. . . . . . . 8
b⊥ C
(b ∩ c) |
21 | 18, 20 | fh2 470 |
. . . . . . 7
((a ∩ b) ∩ (b⊥ ∪ (b ∩ c))) =
(((a ∩ b) ∩ b⊥ ) ∪ ((a ∩ b) ∩
(b ∩ c))) |
22 | | anass 76 |
. . . . . . . . 9
((a ∩ b) ∩ b⊥ ) = (a ∩ (b ∩
b⊥ )) |
23 | | dff 101 |
. . . . . . . . . . 11
0 = (b ∩ b⊥ ) |
24 | 23 | lan 77 |
. . . . . . . . . 10
(a ∩ 0) = (a ∩ (b ∩
b⊥ )) |
25 | 24 | ax-r1 35 |
. . . . . . . . 9
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
26 | | an0 108 |
. . . . . . . . 9
(a ∩ 0) = 0 |
27 | 22, 25, 26 | 3tr 65 |
. . . . . . . 8
((a ∩ b) ∩ b⊥ ) = 0 |
28 | | anass 76 |
. . . . . . . . . 10
(((a ∩ b) ∩ b)
∩ c) = ((a ∩ b) ∩
(b ∩ c)) |
29 | 28 | ax-r1 35 |
. . . . . . . . 9
((a ∩ b) ∩ (b
∩ c)) = (((a ∩ b) ∩
b) ∩ c) |
30 | | anass 76 |
. . . . . . . . . . 11
((a ∩ b) ∩ b) =
(a ∩ (b ∩ b)) |
31 | | anidm 111 |
. . . . . . . . . . . 12
(b ∩ b) = b |
32 | 31 | lan 77 |
. . . . . . . . . . 11
(a ∩ (b ∩ b)) =
(a ∩ b) |
33 | 30, 32 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ b) ∩ b) =
(a ∩ b) |
34 | 33 | ran 78 |
. . . . . . . . 9
(((a ∩ b) ∩ b)
∩ c) = ((a ∩ b) ∩
c) |
35 | 29, 34 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∩ (b
∩ c)) = ((a ∩ b) ∩
c) |
36 | 27, 35 | 2or 72 |
. . . . . . 7
(((a ∩ b) ∩ b⊥ ) ∪ ((a ∩ b) ∩
(b ∩ c))) = (0 ∪ ((a ∩ b) ∩
c)) |
37 | | or0r 103 |
. . . . . . 7
(0 ∪ ((a ∩ b) ∩ c)) =
((a ∩ b) ∩ c) |
38 | 21, 36, 37 | 3tr 65 |
. . . . . 6
((a ∩ b) ∩ (b⊥ ∪ (b ∩ c))) =
((a ∩ b) ∩ c) |
39 | 13 | comcom 453 |
. . . . . . . 8
b⊥ C
(a⊥ ∩ b⊥ ) |
40 | 39, 20 | fh2 470 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c))) =
(((a⊥ ∩ b⊥ ) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ (b ∩ c))) |
41 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ (b⊥ ∩ b⊥ )) |
42 | | anidm 111 |
. . . . . . . . . 10
(b⊥ ∩ b⊥ ) = b⊥ |
43 | 42 | lan 77 |
. . . . . . . . 9
(a⊥ ∩ (b⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
44 | 41, 43 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
45 | | an4 86 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (b ∩ c)) =
((a⊥ ∩ b) ∩ (b⊥ ∩ c)) |
46 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ (b⊥ ∩ c)) = (a⊥ ∩ (b ∩ (b⊥ ∩ c))) |
47 | 23 | ran 78 |
. . . . . . . . . . . . 13
(0 ∩ c) = ((b ∩ b⊥ ) ∩ c) |
48 | 47 | ax-r1 35 |
. . . . . . . . . . . 12
((b ∩ b⊥ ) ∩ c) = (0 ∩ c) |
49 | | anass 76 |
. . . . . . . . . . . 12
((b ∩ b⊥ ) ∩ c) = (b ∩
(b⊥ ∩ c)) |
50 | | an0r 109 |
. . . . . . . . . . . 12
(0 ∩ c) = 0 |
51 | 48, 49, 50 | 3tr2 64 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∩ c)) = 0 |
52 | 51 | lan 77 |
. . . . . . . . . 10
(a⊥ ∩ (b ∩ (b⊥ ∩ c))) = (a⊥ ∩ 0) |
53 | | an0 108 |
. . . . . . . . . 10
(a⊥ ∩ 0) =
0 |
54 | 52, 53 | ax-r2 36 |
. . . . . . . . 9
(a⊥ ∩ (b ∩ (b⊥ ∩ c))) = 0 |
55 | 45, 46, 54 | 3tr 65 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (b ∩ c)) =
0 |
56 | 44, 55 | 2or 72 |
. . . . . . 7
(((a⊥ ∩
b⊥ ) ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∩ (b ∩ c))) =
((a⊥ ∩ b⊥ ) ∪ 0) |
57 | | or0 102 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
58 | 40, 56, 57 | 3tr 65 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c))) =
(a⊥ ∩ b⊥ ) |
59 | 38, 58 | 2or 72 |
. . . . 5
(((a ∩ b) ∩ (b⊥ ∪ (b ∩ c)))
∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∪ (b ∩ c)))) =
(((a ∩ b) ∩ c)
∪ (a⊥ ∩ b⊥ )) |
60 | 6, 16, 59 | 3tr 65 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (b →1 c)) = (((a ∩
b) ∩ c) ∪ (a⊥ ∩ b⊥ )) |
61 | 60 | ran 78 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (b →1 c)) ∩ (c
→2 b)) = ((((a ∩ b) ∩
c) ∪ (a⊥ ∩ b⊥ )) ∩ (c →2 b)) |
62 | | anass 76 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ (b →1 c)) ∩ (c
→2 b)) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∩ ((b →1 c) ∩ (c
→2 b))) |
63 | | lear 161 |
. . . . . . . 8
((a ∩ c) ∩ b) ≤
b |
64 | | leo 158 |
. . . . . . . 8
b ≤ (b ∪ (c⊥ ∩ b⊥ )) |
65 | 63, 64 | letr 137 |
. . . . . . 7
((a ∩ c) ∩ b) ≤
(b ∪ (c⊥ ∩ b⊥ )) |
66 | | an32 83 |
. . . . . . 7
((a ∩ b) ∩ c) =
((a ∩ c) ∩ b) |
67 | | df-i2 45 |
. . . . . . 7
(c →2 b) = (b ∪
(c⊥ ∩ b⊥ )) |
68 | 65, 66, 67 | le3tr1 140 |
. . . . . 6
((a ∩ b) ∩ c) ≤
(c →2 b) |
69 | 68 | lecom 180 |
. . . . 5
((a ∩ b) ∩ c) C
(c →2 b) |
70 | | anass 76 |
. . . . . . . . . 10
((a ∩ b) ∩ c) =
(a ∩ (b ∩ c)) |
71 | | lea 160 |
. . . . . . . . . 10
(a ∩ (b ∩ c)) ≤
a |
72 | 70, 71 | bltr 138 |
. . . . . . . . 9
((a ∩ b) ∩ c) ≤
a |
73 | | leo 158 |
. . . . . . . . 9
a ≤ (a ∪ b) |
74 | 72, 73 | letr 137 |
. . . . . . . 8
((a ∩ b) ∩ c) ≤
(a ∪ b) |
75 | | oran 87 |
. . . . . . . 8
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
76 | 74, 75 | lbtr 139 |
. . . . . . 7
((a ∩ b) ∩ c) ≤
(a⊥ ∩ b⊥
)⊥ |
77 | 76 | lecom 180 |
. . . . . 6
((a ∩ b) ∩ c) C
(a⊥ ∩ b⊥
)⊥ |
78 | 77 | comcom7 460 |
. . . . 5
((a ∩ b) ∩ c) C
(a⊥ ∩ b⊥ ) |
79 | 69, 78 | fh2r 474 |
. . . 4
((((a ∩ b) ∩ c)
∪ (a⊥ ∩ b⊥ )) ∩ (c →2 b)) = ((((a
∩ b) ∩ c) ∩ (c
→2 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (c →2 b))) |
80 | | anass 76 |
. . . . . 6
(((a ∩ b) ∩ c)
∩ (c →2 b)) = ((a ∩
b) ∩ (c ∩ (c
→2 b))) |
81 | | an4 86 |
. . . . . 6
((a ∩ b) ∩ (c
∩ (c →2 b))) = ((a ∩
c) ∩ (b ∩ (c
→2 b))) |
82 | | ancom 74 |
. . . . . . . . 9
(b ∩ (c →2 b)) = ((c
→2 b) ∩ b) |
83 | | u2lemab 611 |
. . . . . . . . 9
((c →2 b) ∩ b) =
b |
84 | 82, 83 | ax-r2 36 |
. . . . . . . 8
(b ∩ (c →2 b)) = b |
85 | 84 | lan 77 |
. . . . . . 7
((a ∩ c) ∩ (b
∩ (c →2 b))) = ((a ∩
c) ∩ b) |
86 | | an32 83 |
. . . . . . 7
((a ∩ c) ∩ b) =
((a ∩ b) ∩ c) |
87 | 85, 86 | ax-r2 36 |
. . . . . 6
((a ∩ c) ∩ (b
∩ (c →2 b))) = ((a ∩
b) ∩ c) |
88 | 80, 81, 87 | 3tr 65 |
. . . . 5
(((a ∩ b) ∩ c)
∩ (c →2 b)) = ((a ∩
b) ∩ c) |
89 | | anass 76 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ (c →2 b)) = (a⊥ ∩ (b⊥ ∩ (c →2 b))) |
90 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ (c →2 b)) = ((c
→2 b) ∩ b⊥ ) |
91 | | u2lemanb 616 |
. . . . . . . 8
((c →2 b) ∩ b⊥ ) = (c⊥ ∩ b⊥ ) |
92 | 90, 91 | ax-r2 36 |
. . . . . . 7
(b⊥ ∩ (c →2 b)) = (c⊥ ∩ b⊥ ) |
93 | 92 | lan 77 |
. . . . . 6
(a⊥ ∩ (b⊥ ∩ (c →2 b))) = (a⊥ ∩ (c⊥ ∩ b⊥ )) |
94 | | an12 81 |
. . . . . . 7
(a⊥ ∩ (c⊥ ∩ b⊥ )) = (c⊥ ∩ (a⊥ ∩ b⊥ )) |
95 | | ancom 74 |
. . . . . . 7
(c⊥ ∩ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
96 | 94, 95 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (c⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
97 | 89, 93, 96 | 3tr 65 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ (c →2 b)) = ((a⊥ ∩ b⊥ ) ∩ c⊥ ) |
98 | 88, 97 | 2or 72 |
. . . 4
((((a ∩ b) ∩ c)
∩ (c →2 b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (c →2 b))) = (((a
∩ b) ∩ c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
99 | 79, 98 | ax-r2 36 |
. . 3
((((a ∩ b) ∩ c)
∪ (a⊥ ∩ b⊥ )) ∩ (c →2 b)) = (((a ∩
b) ∩ c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
100 | 61, 62, 99 | 3tr2 64 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ ((b →1 c) ∩ (c
→2 b))) = (((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |
101 | 4, 100 | ax-r2 36 |
1
((a ≡ b) ∩ (b
≡ c)) = (((a ∩ b) ∩
c) ∪ ((a⊥ ∩ b⊥ ) ∩ c⊥ )) |