Proof of Theorem ud5lem3
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. 2
((a →5 b) →5 (a ∪ (a⊥ ∩ b))) = ((((a
→5 b) ∩ (a ∪ (a⊥ ∩ b))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b)))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b))⊥ )) |
| 2 | | ud5lem3a 591 |
. . . . 5
((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 3 | | ud5lem3b 592 |
. . . . 5
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a ∩
(a⊥ ∪ b⊥ )) |
| 4 | 2, 3 | 2or 72 |
. . . 4
(((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b)))) = (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b⊥ ))) |
| 5 | | ud5lem3c 593 |
. . . 4
((a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))⊥ ) = (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ) |
| 6 | 4, 5 | 2or 72 |
. . 3
((((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b)))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b))⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b⊥ ))) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ )) |
| 7 | | ax-a3 32 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b⊥ ))) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a
∩ (a⊥ ∪ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ))) |
| 8 | | or4 84 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ (a⊥ ∪ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ))) = (((a ∩ b) ∪
(a ∩ (a⊥ ∪ b⊥ ))) ∪ ((a⊥ ∩ b) ∪ (((a
∪ b) ∩ (a ∪ b⊥ )) ∩ a⊥ ))) |
| 9 | | comanr1 464 |
. . . . . . . . 9
a C (a ∩ b) |
| 10 | | comorr 184 |
. . . . . . . . . 10
a⊥ C
(a⊥ ∪ b⊥ ) |
| 11 | 10 | comcom6 459 |
. . . . . . . . 9
a C (a⊥ ∪ b⊥ ) |
| 12 | 9, 11 | fh4 472 |
. . . . . . . 8
((a ∩ b) ∪ (a
∩ (a⊥ ∪ b⊥ ))) = (((a ∩ b) ∪
a) ∩ ((a ∩ b) ∪
(a⊥ ∪ b⊥ ))) |
| 13 | | ax-a2 31 |
. . . . . . . . . . 11
((a ∩ b) ∪ a) =
(a ∪ (a ∩ b)) |
| 14 | | orabs 120 |
. . . . . . . . . . 11
(a ∪ (a ∩ b)) =
a |
| 15 | 13, 14 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ b) ∪ a) =
a |
| 16 | | df-a 40 |
. . . . . . . . . . . . . 14
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 17 | 16 | ax-r1 35 |
. . . . . . . . . . . . 13
(a⊥ ∪ b⊥ )⊥ = (a ∩ b) |
| 18 | 17 | con3 68 |
. . . . . . . . . . . 12
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
| 19 | 18 | lor 70 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∩ b) ∪
(a ∩ b)⊥ ) |
| 20 | | df-t 41 |
. . . . . . . . . . . 12
1 = ((a ∩ b) ∪ (a
∩ b)⊥
) |
| 21 | 20 | ax-r1 35 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a
∩ b)⊥ ) =
1 |
| 22 | 19, 21 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
| 23 | 15, 22 | 2an 79 |
. . . . . . . . 9
(((a ∩ b) ∪ a)
∩ ((a ∩ b) ∪ (a⊥ ∪ b⊥ ))) = (a ∩ 1) |
| 24 | | an1 106 |
. . . . . . . . 9
(a ∩ 1) = a |
| 25 | 23, 24 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ a)
∩ ((a ∩ b) ∪ (a⊥ ∪ b⊥ ))) = a |
| 26 | 12, 25 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ (a⊥ ∪ b⊥ ))) = a |
| 27 | | coman1 185 |
. . . . . . . . . . . 12
(a⊥ ∩ b) C a⊥ |
| 28 | 27 | comcom7 460 |
. . . . . . . . . . 11
(a⊥ ∩ b) C a |
| 29 | | coman2 186 |
. . . . . . . . . . 11
(a⊥ ∩ b) C b |
| 30 | 28, 29 | com2or 483 |
. . . . . . . . . 10
(a⊥ ∩ b) C (a
∪ b) |
| 31 | 29 | comcom2 183 |
. . . . . . . . . . 11
(a⊥ ∩ b) C b⊥ |
| 32 | 28, 31 | com2or 483 |
. . . . . . . . . 10
(a⊥ ∩ b) C (a
∪ b⊥
) |
| 33 | 30, 32 | com2an 484 |
. . . . . . . . 9
(a⊥ ∩ b) C ((a
∪ b) ∩ (a ∪ b⊥ )) |
| 34 | 33, 27 | fh3 471 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (((a
∪ b) ∩ (a ∪ b⊥ )) ∩ a⊥ )) = (((a⊥ ∩ b) ∪ ((a
∪ b) ∩ (a ∪ b⊥ ))) ∩ ((a⊥ ∩ b) ∪ a⊥ )) |
| 35 | | comor1 461 |
. . . . . . . . . . . . . 14
(a ∪ b) C a |
| 36 | 35 | comcom2 183 |
. . . . . . . . . . . . 13
(a ∪ b) C a⊥ |
| 37 | | comor2 462 |
. . . . . . . . . . . . 13
(a ∪ b) C b |
| 38 | 36, 37 | com2an 484 |
. . . . . . . . . . . 12
(a ∪ b) C (a⊥ ∩ b) |
| 39 | 37 | comcom2 183 |
. . . . . . . . . . . . 13
(a ∪ b) C b⊥ |
| 40 | 35, 39 | com2or 483 |
. . . . . . . . . . . 12
(a ∪ b) C (a
∪ b⊥
) |
| 41 | 38, 40 | fh4 472 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ ((a
∪ b) ∩ (a ∪ b⊥ ))) = (((a⊥ ∩ b) ∪ (a
∪ b)) ∩ ((a⊥ ∩ b) ∪ (a
∪ b⊥
))) |
| 42 | 36, 37 | fh3r 475 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∪ (a
∪ b)) = ((a⊥ ∪ (a ∪ b))
∩ (b ∪ (a ∪ b))) |
| 43 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
(a⊥ ∪ (a ∪ b)) =
((a ∪ b) ∪ a⊥ ) |
| 44 | | or12 80 |
. . . . . . . . . . . . . . . . 17
(b ∪ (a ∪ b)) =
(a ∪ (b ∪ b)) |
| 45 | | oridm 110 |
. . . . . . . . . . . . . . . . . 18
(b ∪ b) = b |
| 46 | 45 | lor 70 |
. . . . . . . . . . . . . . . . 17
(a ∪ (b ∪ b)) =
(a ∪ b) |
| 47 | 44, 46 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(b ∪ (a ∪ b)) =
(a ∪ b) |
| 48 | 43, 47 | 2an 79 |
. . . . . . . . . . . . . . 15
((a⊥ ∪
(a ∪ b)) ∩ (b
∪ (a ∪ b))) = (((a
∪ b) ∪ a⊥ ) ∩ (a ∪ b)) |
| 49 | | ancom 74 |
. . . . . . . . . . . . . . . 16
(((a ∪ b) ∪ a⊥ ) ∩ (a ∪ b)) =
((a ∪ b) ∩ ((a
∪ b) ∪ a⊥ )) |
| 50 | | anabs 121 |
. . . . . . . . . . . . . . . 16
((a ∪ b) ∩ ((a
∪ b) ∪ a⊥ )) = (a ∪ b) |
| 51 | 49, 50 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(((a ∪ b) ∪ a⊥ ) ∩ (a ∪ b)) =
(a ∪ b) |
| 52 | 48, 51 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a⊥ ∪
(a ∪ b)) ∩ (b
∪ (a ∪ b))) = (a ∪
b) |
| 53 | 42, 52 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∪ (a
∪ b)) = (a ∪ b) |
| 54 | | anor2 89 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
| 55 | 54 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
(a ∪ b⊥ )⊥ = (a⊥ ∩ b) |
| 56 | 55 | con3 68 |
. . . . . . . . . . . . . . 15
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
| 57 | 56 | lor 70 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∪ (a
∪ b⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) |
| 58 | | df-t 41 |
. . . . . . . . . . . . . . 15
1 = ((a⊥ ∩
b) ∪ (a⊥ ∩ b)⊥ ) |
| 59 | 58 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) = 1 |
| 60 | 57, 59 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∪ (a
∪ b⊥ )) =
1 |
| 61 | 53, 60 | 2an 79 |
. . . . . . . . . . . 12
(((a⊥ ∩
b) ∪ (a ∪ b))
∩ ((a⊥ ∩ b) ∪ (a
∪ b⊥ ))) = ((a ∪ b) ∩
1) |
| 62 | | an1 106 |
. . . . . . . . . . . 12
((a ∪ b) ∩ 1) = (a
∪ b) |
| 63 | 61, 62 | ax-r2 36 |
. . . . . . . . . . 11
(((a⊥ ∩
b) ∪ (a ∪ b))
∩ ((a⊥ ∩ b) ∪ (a
∪ b⊥ ))) = (a ∪ b) |
| 64 | 41, 63 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ ((a
∪ b) ∩ (a ∪ b⊥ ))) = (a ∪ b) |
| 65 | | ax-a2 31 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ a⊥ ) = (a⊥ ∪ (a⊥ ∩ b)) |
| 66 | | orabs 120 |
. . . . . . . . . . 11
(a⊥ ∪ (a⊥ ∩ b)) = a⊥ |
| 67 | 65, 66 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ a⊥ ) = a⊥ |
| 68 | 64, 67 | 2an 79 |
. . . . . . . . 9
(((a⊥ ∩
b) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) ∩ ((a⊥ ∩ b) ∪ a⊥ )) = ((a ∪ b) ∩
a⊥ ) |
| 69 | | ancom 74 |
. . . . . . . . 9
((a ∪ b) ∩ a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 70 | 68, 69 | ax-r2 36 |
. . . . . . . 8
(((a⊥ ∩
b) ∪ ((a ∪ b) ∩
(a ∪ b⊥ ))) ∩ ((a⊥ ∩ b) ∪ a⊥ )) = (a⊥ ∩ (a ∪ b)) |
| 71 | 34, 70 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b) ∪ (((a
∪ b) ∩ (a ∪ b⊥ )) ∩ a⊥ )) = (a⊥ ∩ (a ∪ b)) |
| 72 | 26, 71 | 2or 72 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ (a⊥ ∪ b⊥ ))) ∪ ((a⊥ ∩ b) ∪ (((a
∪ b) ∩ (a ∪ b⊥ )) ∩ a⊥ ))) = (a ∪ (a⊥ ∩ (a ∪ b))) |
| 73 | | oml 445 |
. . . . . 6
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 74 | 72, 73 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a
∩ (a⊥ ∪ b⊥ ))) ∪ ((a⊥ ∩ b) ∪ (((a
∪ b) ∩ (a ∪ b⊥ )) ∩ a⊥ ))) = (a ∪ b) |
| 75 | 8, 74 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ (a⊥ ∪ b⊥ )) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ ))) = (a ∪ b) |
| 76 | 7, 75 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a
∩ (a⊥ ∪ b⊥ ))) ∪ (((a ∪ b) ∩
(a ∪ b⊥ )) ∩ a⊥ )) = (a ∪ b) |
| 77 | 6, 76 | ax-r2 36 |
. 2
((((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b)))) ∪ ((a
→5 b)⊥
∩ (a ∪ (a⊥ ∩ b))⊥ )) = (a ∪ b) |
| 78 | 1, 77 | ax-r2 36 |
1
((a →5 b) →5 (a ∪ (a⊥ ∩ b))) = (a ∪
b) |