Proof of Theorem ud1lem3
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. 2
((a →1 b) →1 (a ∪ b)) =
((a →1 b)⊥ ∪ ((a →1 b) ∩ (a
∪ b))) |
2 | | ud1lem0c 277 |
. . . 4
(a →1 b)⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
3 | 2 | con3 68 |
. . . . 5
(a →1 b) = (a ∩
(a⊥ ∪ b⊥
))⊥ |
4 | 3 | ran 78 |
. . . 4
((a →1 b) ∩ (a
∪ b)) = ((a ∩ (a⊥ ∪ b⊥ ))⊥ ∩
(a ∪ b)) |
5 | 2, 4 | 2or 72 |
. . 3
((a →1 b)⊥ ∪ ((a →1 b) ∩ (a
∪ b))) = ((a ∩ (a⊥ ∪ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b⊥ ))⊥ ∩
(a ∪ b))) |
6 | | comid 187 |
. . . . . 6
(a ∩ (a⊥ ∪ b⊥ )) C (a ∩ (a⊥ ∪ b⊥ )) |
7 | 6 | comcom2 183 |
. . . . 5
(a ∩ (a⊥ ∪ b⊥ )) C (a ∩ (a⊥ ∪ b⊥
))⊥ |
8 | | comor1 461 |
. . . . . . 7
(a ∪ b) C a |
9 | 8 | comcom2 183 |
. . . . . . . 8
(a ∪ b) C a⊥ |
10 | | comor2 462 |
. . . . . . . . 9
(a ∪ b) C b |
11 | 10 | comcom2 183 |
. . . . . . . 8
(a ∪ b) C b⊥ |
12 | 9, 11 | com2or 483 |
. . . . . . 7
(a ∪ b) C (a⊥ ∪ b⊥ ) |
13 | 8, 12 | com2an 484 |
. . . . . 6
(a ∪ b) C (a
∩ (a⊥ ∪ b⊥ )) |
14 | 13 | comcom 453 |
. . . . 5
(a ∩ (a⊥ ∪ b⊥ )) C (a ∪ b) |
15 | 7, 14 | fh3 471 |
. . . 4
((a ∩ (a⊥ ∪ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b⊥ ))⊥ ∩
(a ∪ b))) = (((a
∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥ ) ∩
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))) |
16 | | ancom 74 |
. . . . 5
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥ ) ∩
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))) =
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))
∩ ((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥
)) |
17 | | df-t 41 |
. . . . . . . 8
1 = ((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥
) |
18 | 17 | ax-r1 35 |
. . . . . . 7
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥ ) =
1 |
19 | 18 | lan 77 |
. . . . . 6
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))
∩ ((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥ )) =
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))
∩ 1) |
20 | | an1 106 |
. . . . . . 7
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))
∩ 1) = ((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b)) |
21 | | comorr 184 |
. . . . . . . . 9
a C (a ∪ b) |
22 | | comorr 184 |
. . . . . . . . . . 11
a⊥ C
(a⊥ ∪ b⊥ ) |
23 | 22 | comcom2 183 |
. . . . . . . . . 10
a⊥ C
(a⊥ ∪ b⊥
)⊥ |
24 | 23 | comcom5 458 |
. . . . . . . . 9
a C (a⊥ ∪ b⊥ ) |
25 | 21, 24 | fh4r 476 |
. . . . . . . 8
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b)) =
((a ∪ (a ∪ b))
∩ ((a⊥ ∪ b⊥ ) ∪ (a ∪ b))) |
26 | | ax-a2 31 |
. . . . . . . . . . 11
((a⊥ ∪ b⊥ ) ∪ (a ∪ b)) =
((a ∪ b) ∪ (a⊥ ∪ b⊥ )) |
27 | | or4 84 |
. . . . . . . . . . . 12
((a ∪ b) ∪ (a⊥ ∪ b⊥ )) = ((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) |
28 | | df-t 41 |
. . . . . . . . . . . . . . 15
1 = (b ∪ b⊥ ) |
29 | 28 | ax-r1 35 |
. . . . . . . . . . . . . 14
(b ∪ b⊥ ) = 1 |
30 | 29 | lor 70 |
. . . . . . . . . . . . 13
((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) = ((a ∪ a⊥ ) ∪ 1) |
31 | | or1 104 |
. . . . . . . . . . . . 13
((a ∪ a⊥ ) ∪ 1) = 1 |
32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∪ a⊥ ) ∪ (b ∪ b⊥ )) = 1 |
33 | 27, 32 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b) ∪ (a⊥ ∪ b⊥ )) = 1 |
34 | 26, 33 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∪ b⊥ ) ∪ (a ∪ b)) =
1 |
35 | 34 | lan 77 |
. . . . . . . . 9
((a ∪ (a ∪ b))
∩ ((a⊥ ∪ b⊥ ) ∪ (a ∪ b))) =
((a ∪ (a ∪ b))
∩ 1) |
36 | | an1 106 |
. . . . . . . . . 10
((a ∪ (a ∪ b))
∩ 1) = (a ∪ (a ∪ b)) |
37 | | ax-a3 32 |
. . . . . . . . . . . 12
((a ∪ a) ∪ b) =
(a ∪ (a ∪ b)) |
38 | 37 | ax-r1 35 |
. . . . . . . . . . 11
(a ∪ (a ∪ b)) =
((a ∪ a) ∪ b) |
39 | | oridm 110 |
. . . . . . . . . . . 12
(a ∪ a) = a |
40 | 39 | ax-r5 38 |
. . . . . . . . . . 11
((a ∪ a) ∪ b) =
(a ∪ b) |
41 | 38, 40 | ax-r2 36 |
. . . . . . . . . 10
(a ∪ (a ∪ b)) =
(a ∪ b) |
42 | 36, 41 | ax-r2 36 |
. . . . . . . . 9
((a ∪ (a ∪ b))
∩ 1) = (a ∪ b) |
43 | 35, 42 | ax-r2 36 |
. . . . . . . 8
((a ∪ (a ∪ b))
∩ ((a⊥ ∪ b⊥ ) ∪ (a ∪ b))) =
(a ∪ b) |
44 | 25, 43 | ax-r2 36 |
. . . . . . 7
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b)) =
(a ∪ b) |
45 | 20, 44 | ax-r2 36 |
. . . . . 6
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))
∩ 1) = (a ∪ b) |
46 | 19, 45 | ax-r2 36 |
. . . . 5
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))
∩ ((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥ )) =
(a ∪ b) |
47 | 16, 46 | ax-r2 36 |
. . . 4
(((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∩ (a⊥ ∪ b⊥ ))⊥ ) ∩
((a ∩ (a⊥ ∪ b⊥ )) ∪ (a ∪ b))) =
(a ∪ b) |
48 | 15, 47 | ax-r2 36 |
. . 3
((a ∩ (a⊥ ∪ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b⊥ ))⊥ ∩
(a ∪ b))) = (a ∪
b) |
49 | 5, 48 | ax-r2 36 |
. 2
((a →1 b)⊥ ∪ ((a →1 b) ∩ (a
∪ b))) = (a ∪ b) |
50 | 1, 49 | ax-r2 36 |
1
((a →1 b) →1 (a ∪ b)) =
(a ∪ b) |