Proof of Theorem ud1lem2
| Step | Hyp | Ref
| Expression |
| 1 | | df-i1 44 |
. 2
((a ∪ (a⊥ ∩ b⊥ )) →1 a) = ((a ∪
(a⊥ ∩ b⊥ ))⊥ ∪
((a ∪ (a⊥ ∩ b⊥ )) ∩ a)) |
| 2 | | comid 187 |
. . . 4
(a ∪ (a⊥ ∩ b⊥ )) C (a ∪ (a⊥ ∩ b⊥ )) |
| 3 | 2 | comcom3 454 |
. . 3
(a ∪ (a⊥ ∩ b⊥ ))⊥ C
(a ∪ (a⊥ ∩ b⊥ )) |
| 4 | | comor1 461 |
. . . 4
(a ∪ (a⊥ ∩ b⊥ )) C a |
| 5 | 4 | comcom3 454 |
. . 3
(a ∪ (a⊥ ∩ b⊥ ))⊥ C
a |
| 6 | 3, 5 | fh3 471 |
. 2
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
((a ∪ (a⊥ ∩ b⊥ )) ∩ a)) = (((a ∪
(a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ ))) ∩ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a)) |
| 7 | | ancom 74 |
. . 3
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ ))) ∩ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a)) = (((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ )))) |
| 8 | | ax-a2 31 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ ))) = ((a ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ (a⊥ ∩ b⊥ ))⊥
) |
| 9 | | df-t 41 |
. . . . . 6
1 = ((a ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ (a⊥ ∩ b⊥ ))⊥
) |
| 10 | 9 | ax-r1 35 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ )) ∪ (a ∪ (a⊥ ∩ b⊥ ))⊥ ) =
1 |
| 11 | 8, 10 | ax-r2 36 |
. . . 4
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ ))) = 1 |
| 12 | 11 | lan 77 |
. . 3
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ )))) = (((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ 1) |
| 13 | | an1 106 |
. . . 4
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ 1) = ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) |
| 14 | | oran 87 |
. . . . . . 7
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ |
| 15 | | oran 87 |
. . . . . . . . . 10
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 16 | 15 | ax-r1 35 |
. . . . . . . . 9
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
| 17 | 16 | lan 77 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
(a⊥ ∩ (a ∪ b)) |
| 18 | 17 | ax-r4 37 |
. . . . . . 7
(a⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ = (a⊥
∩ (a ∪ b))⊥ |
| 19 | 14, 18 | ax-r2 36 |
. . . . . 6
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a ∪ b))⊥ |
| 20 | 19 | con2 67 |
. . . . 5
(a ∪ (a⊥ ∩ b⊥ ))⊥ = (a⊥ ∩ (a ∪ b)) |
| 21 | 20 | ax-r5 38 |
. . . 4
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) = ((a⊥ ∩ (a ∪ b))
∪ a) |
| 22 | | ax-a2 31 |
. . . . 5
((a⊥ ∩
(a ∪ b)) ∪ a) =
(a ∪ (a⊥ ∩ (a ∪ b))) |
| 23 | | oml 445 |
. . . . 5
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 24 | 22, 23 | ax-r2 36 |
. . . 4
((a⊥ ∩
(a ∪ b)) ∪ a) =
(a ∪ b) |
| 25 | 13, 21, 24 | 3tr 65 |
. . 3
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a) ∩ 1) = (a ∪ b) |
| 26 | 7, 12, 25 | 3tr 65 |
. 2
(((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
(a ∪ (a⊥ ∩ b⊥ ))) ∩ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∪
a)) = (a ∪ b) |
| 27 | 1, 6, 26 | 3tr 65 |
1
((a ∪ (a⊥ ∩ b⊥ )) →1 a) = (a ∪
b) |