QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud1lem1 GIF version

Theorem ud1lem1 560
Description: Lemma for unified disjunction. (Contributed by NM, 23-Nov-1997.)
Assertion
Ref Expression
ud1lem1 ((a1 b) →1 (b1 a)) = (a ∪ (ab ))

Proof of Theorem ud1lem1
StepHypRef Expression
1 df-i1 44 . 2 ((a1 b) →1 (b1 a)) = ((a1 b) ∪ ((a1 b) ∩ (b1 a)))
2 ud1lem0c 277 . . . 4 (a1 b) = (a ∩ (ab ))
3 df-i1 44 . . . . 5 (a1 b) = (a ∪ (ab))
4 df-i1 44 . . . . 5 (b1 a) = (b ∪ (ba))
53, 42an 79 . . . 4 ((a1 b) ∩ (b1 a)) = ((a ∪ (ab)) ∩ (b ∪ (ba)))
62, 52or 72 . . 3 ((a1 b) ∪ ((a1 b) ∩ (b1 a))) = ((a ∩ (ab )) ∪ ((a ∪ (ab)) ∩ (b ∪ (ba))))
7 ancom 74 . . . . . . . 8 (ba) = (ab)
87lor 70 . . . . . . 7 (b ∪ (ba)) = (b ∪ (ab))
98lan 77 . . . . . 6 ((a ∪ (ab)) ∩ (b ∪ (ba))) = ((a ∪ (ab)) ∩ (b ∪ (ab)))
10 coman1 185 . . . . . . . . 9 (ab) C a
1110comcom2 183 . . . . . . . 8 (ab) C a
12 coman2 186 . . . . . . . . 9 (ab) C b
1312comcom2 183 . . . . . . . 8 (ab) C b
1411, 13fh3r 475 . . . . . . 7 ((ab ) ∪ (ab)) = ((a ∪ (ab)) ∩ (b ∪ (ab)))
1514ax-r1 35 . . . . . 6 ((a ∪ (ab)) ∩ (b ∪ (ab))) = ((ab ) ∪ (ab))
169, 15ax-r2 36 . . . . 5 ((a ∪ (ab)) ∩ (b ∪ (ba))) = ((ab ) ∪ (ab))
1716lor 70 . . . 4 ((a ∩ (ab )) ∪ ((a ∪ (ab)) ∩ (b ∪ (ba)))) = ((a ∩ (ab )) ∪ ((ab ) ∪ (ab)))
18 or12 80 . . . . 5 ((a ∩ (ab )) ∪ ((ab ) ∪ (ab))) = ((ab ) ∪ ((a ∩ (ab )) ∪ (ab)))
1910comcom 453 . . . . . . . 8 a C (ab)
20 comorr 184 . . . . . . . . . 10 a C (ab )
2120comcom2 183 . . . . . . . . 9 a C (ab )
2221comcom5 458 . . . . . . . 8 a C (ab )
2319, 22fh4r 476 . . . . . . 7 ((a ∩ (ab )) ∪ (ab)) = ((a ∪ (ab)) ∩ ((ab ) ∪ (ab)))
2423lor 70 . . . . . 6 ((ab ) ∪ ((a ∩ (ab )) ∪ (ab))) = ((ab ) ∪ ((a ∪ (ab)) ∩ ((ab ) ∪ (ab))))
25 orabs 120 . . . . . . . . . 10 (a ∪ (ab)) = a
26 df-a 40 . . . . . . . . . . . 12 (ab) = (ab )
2726lor 70 . . . . . . . . . . 11 ((ab ) ∪ (ab)) = ((ab ) ∪ (ab ) )
28 df-t 41 . . . . . . . . . . . 12 1 = ((ab ) ∪ (ab ) )
2928ax-r1 35 . . . . . . . . . . 11 ((ab ) ∪ (ab ) ) = 1
3027, 29ax-r2 36 . . . . . . . . . 10 ((ab ) ∪ (ab)) = 1
3125, 302an 79 . . . . . . . . 9 ((a ∪ (ab)) ∩ ((ab ) ∪ (ab))) = (a ∩ 1)
32 an1 106 . . . . . . . . 9 (a ∩ 1) = a
3331, 32ax-r2 36 . . . . . . . 8 ((a ∪ (ab)) ∩ ((ab ) ∪ (ab))) = a
3433lor 70 . . . . . . 7 ((ab ) ∪ ((a ∪ (ab)) ∩ ((ab ) ∪ (ab)))) = ((ab ) ∪ a)
35 ax-a2 31 . . . . . . 7 ((ab ) ∪ a) = (a ∪ (ab ))
3634, 35ax-r2 36 . . . . . 6 ((ab ) ∪ ((a ∪ (ab)) ∩ ((ab ) ∪ (ab)))) = (a ∪ (ab ))
3724, 36ax-r2 36 . . . . 5 ((ab ) ∪ ((a ∩ (ab )) ∪ (ab))) = (a ∪ (ab ))
3818, 37ax-r2 36 . . . 4 ((a ∩ (ab )) ∪ ((ab ) ∪ (ab))) = (a ∪ (ab ))
3917, 38ax-r2 36 . . 3 ((a ∩ (ab )) ∪ ((a ∪ (ab)) ∩ (b ∪ (ba)))) = (a ∪ (ab ))
406, 39ax-r2 36 . 2 ((a1 b) ∪ ((a1 b) ∩ (b1 a))) = (a ∪ (ab ))
411, 40ax-r2 36 1 ((a1 b) →1 (b1 a)) = (a ∪ (ab ))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  ud1  595
  Copyright terms: Public domain W3C validator