Proof of Theorem ud2lem1
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. 2
((a →2 b) →2 (b →2 a)) = ((b
→2 a) ∪ ((a →2 b)⊥ ∩ (b →2 a)⊥ )) |
2 | | df-i2 45 |
. . . 4
(b →2 a) = (a ∪
(b⊥ ∩ a⊥ )) |
3 | | ud2lem0c 278 |
. . . . 5
(a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
4 | | ud2lem0c 278 |
. . . . 5
(b →2 a)⊥ = (a⊥ ∩ (b ∪ a)) |
5 | 3, 4 | 2an 79 |
. . . 4
((a →2 b)⊥ ∩ (b →2 a)⊥ ) = ((b⊥ ∩ (a ∪ b))
∩ (a⊥ ∩ (b ∪ a))) |
6 | 2, 5 | 2or 72 |
. . 3
((b →2 a) ∪ ((a
→2 b)⊥
∩ (b →2 a)⊥ )) = ((a ∪ (b⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ (a ∪ b))
∩ (a⊥ ∩ (b ∪ a)))) |
7 | | ancom 74 |
. . . . . 6
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
8 | 7 | lor 70 |
. . . . 5
(a ∪ (b⊥ ∩ a⊥ )) = (a ∪ (a⊥ ∩ b⊥ )) |
9 | | dff 101 |
. . . . . . . 8
0 = ((b⊥ ∩
a⊥ ) ∩ (b⊥ ∩ a⊥ )⊥
) |
10 | | oran 87 |
. . . . . . . . . 10
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
11 | 10 | ax-r1 35 |
. . . . . . . . 9
(b⊥ ∩ a⊥ )⊥ = (b ∪ a) |
12 | 11 | lan 77 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∩ (b⊥ ∩ a⊥ )⊥ ) =
((b⊥ ∩ a⊥ ) ∩ (b ∪ a)) |
13 | 9, 12 | ax-r2 36 |
. . . . . . 7
0 = ((b⊥ ∩
a⊥ ) ∩ (b ∪ a)) |
14 | | anandir 115 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∩ (b ∪ a)) =
((b⊥ ∩ (b ∪ a))
∩ (a⊥ ∩ (b ∪ a))) |
15 | | ax-a2 31 |
. . . . . . . . . 10
(b ∪ a) = (a ∪
b) |
16 | 15 | lan 77 |
. . . . . . . . 9
(b⊥ ∩ (b ∪ a)) =
(b⊥ ∩ (a ∪ b)) |
17 | 16 | ran 78 |
. . . . . . . 8
((b⊥ ∩
(b ∪ a)) ∩ (a⊥ ∩ (b ∪ a))) =
((b⊥ ∩ (a ∪ b))
∩ (a⊥ ∩ (b ∪ a))) |
18 | 14, 17 | ax-r2 36 |
. . . . . . 7
((b⊥ ∩ a⊥ ) ∩ (b ∪ a)) =
((b⊥ ∩ (a ∪ b))
∩ (a⊥ ∩ (b ∪ a))) |
19 | 13, 18 | ax-r2 36 |
. . . . . 6
0 = ((b⊥ ∩
(a ∪ b)) ∩ (a⊥ ∩ (b ∪ a))) |
20 | 19 | ax-r1 35 |
. . . . 5
((b⊥ ∩
(a ∪ b)) ∩ (a⊥ ∩ (b ∪ a))) =
0 |
21 | 8, 20 | 2or 72 |
. . . 4
((a ∪ (b⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ (a ∪ b))
∩ (a⊥ ∩ (b ∪ a)))) =
((a ∪ (a⊥ ∩ b⊥ )) ∪ 0) |
22 | | or0 102 |
. . . 4
((a ∪ (a⊥ ∩ b⊥ )) ∪ 0) = (a ∪ (a⊥ ∩ b⊥ )) |
23 | 21, 22 | ax-r2 36 |
. . 3
((a ∪ (b⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ (a ∪ b))
∩ (a⊥ ∩ (b ∪ a)))) =
(a ∪ (a⊥ ∩ b⊥ )) |
24 | 6, 23 | ax-r2 36 |
. 2
((b →2 a) ∪ ((a
→2 b)⊥
∩ (b →2 a)⊥ )) = (a ∪ (a⊥ ∩ b⊥ )) |
25 | 1, 24 | ax-r2 36 |
1
((a →2 b) →2 (b →2 a)) = (a ∪
(a⊥ ∩ b⊥ )) |