Proof of Theorem ud2lem3
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. 2
((a →2 b) →2 (a ∪ b)) =
((a ∪ b) ∪ ((a
→2 b)⊥
∩ (a ∪ b)⊥ )) |
| 2 | | ud2lem0c 278 |
. . . . 5
(a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
| 3 | 2 | ran 78 |
. . . 4
((a →2 b)⊥ ∩ (a ∪ b)⊥ ) = ((b⊥ ∩ (a ∪ b))
∩ (a ∪ b)⊥ ) |
| 4 | 3 | lor 70 |
. . 3
((a ∪ b) ∪ ((a
→2 b)⊥
∩ (a ∪ b)⊥ )) = ((a ∪ b) ∪
((b⊥ ∩ (a ∪ b))
∩ (a ∪ b)⊥ )) |
| 5 | | coman2 186 |
. . . . . 6
(b⊥ ∩ (a ∪ b)) C
(a ∪ b) |
| 6 | 5 | comcom 453 |
. . . . 5
(a ∪ b) C (b⊥ ∩ (a ∪ b)) |
| 7 | | comid 187 |
. . . . . 6
(a ∪ b) C (a
∪ b) |
| 8 | 7 | comcom2 183 |
. . . . 5
(a ∪ b) C (a
∪ b)⊥ |
| 9 | 6, 8 | fh3 471 |
. . . 4
((a ∪ b) ∪ ((b⊥ ∩ (a ∪ b))
∩ (a ∪ b)⊥ )) = (((a ∪ b) ∪
(b⊥ ∩ (a ∪ b)))
∩ ((a ∪ b) ∪ (a
∪ b)⊥
)) |
| 10 | | ancom 74 |
. . . . . . 7
(b⊥ ∩ (a ∪ b)) =
((a ∪ b) ∩ b⊥ ) |
| 11 | 10 | lor 70 |
. . . . . 6
((a ∪ b) ∪ (b⊥ ∩ (a ∪ b))) =
((a ∪ b) ∪ ((a
∪ b) ∩ b⊥ )) |
| 12 | | df-t 41 |
. . . . . . 7
1 = ((a ∪ b) ∪ (a
∪ b)⊥
) |
| 13 | 12 | ax-r1 35 |
. . . . . 6
((a ∪ b) ∪ (a
∪ b)⊥ ) =
1 |
| 14 | 11, 13 | 2an 79 |
. . . . 5
(((a ∪ b) ∪ (b⊥ ∩ (a ∪ b)))
∩ ((a ∪ b) ∪ (a
∪ b)⊥ )) = (((a ∪ b) ∪
((a ∪ b) ∩ b⊥ )) ∩ 1) |
| 15 | | an1 106 |
. . . . . 6
(((a ∪ b) ∪ ((a
∪ b) ∩ b⊥ )) ∩ 1) = ((a ∪ b) ∪
((a ∪ b) ∩ b⊥ )) |
| 16 | | orabs 120 |
. . . . . 6
((a ∪ b) ∪ ((a
∪ b) ∩ b⊥ )) = (a ∪ b) |
| 17 | 15, 16 | ax-r2 36 |
. . . . 5
(((a ∪ b) ∪ ((a
∪ b) ∩ b⊥ )) ∩ 1) = (a ∪ b) |
| 18 | 14, 17 | ax-r2 36 |
. . . 4
(((a ∪ b) ∪ (b⊥ ∩ (a ∪ b)))
∩ ((a ∪ b) ∪ (a
∪ b)⊥ )) = (a ∪ b) |
| 19 | 9, 18 | ax-r2 36 |
. . 3
((a ∪ b) ∪ ((b⊥ ∩ (a ∪ b))
∩ (a ∪ b)⊥ )) = (a ∪ b) |
| 20 | 4, 19 | ax-r2 36 |
. 2
((a ∪ b) ∪ ((a
→2 b)⊥
∩ (a ∪ b)⊥ )) = (a ∪ b) |
| 21 | 1, 20 | ax-r2 36 |
1
((a →2 b) →2 (a ∪ b)) =
(a ∪ b) |