Proof of Theorem ud3lem1
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. 2
((a →3 b) →3 (b →3 a)) = ((((a
→3 b)⊥
∩ (b →3 a)) ∪ ((a
→3 b)⊥
∩ (b →3 a)⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a)))) |
| 2 | | ud3lem1a 566 |
. . . . . 6
((a →3 b)⊥ ∩ (b →3 a)) = (a ∩
b⊥ ) |
| 3 | | ud3lem1b 567 |
. . . . . 6
((a →3 b)⊥ ∩ (b →3 a)⊥ ) = 0 |
| 4 | 2, 3 | 2or 72 |
. . . . 5
(((a →3 b)⊥ ∩ (b →3 a)) ∪ ((a
→3 b)⊥
∩ (b →3 a)⊥ )) = ((a ∩ b⊥ ) ∪ 0) |
| 5 | | or0 102 |
. . . . 5
((a ∩ b⊥ ) ∪ 0) = (a ∩ b⊥ ) |
| 6 | 4, 5 | ax-r2 36 |
. . . 4
(((a →3 b)⊥ ∩ (b →3 a)) ∪ ((a
→3 b)⊥
∩ (b →3 a)⊥ )) = (a ∩ b⊥ ) |
| 7 | | ud3lem1d 569 |
. . . 4
((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) |
| 8 | 6, 7 | 2or 72 |
. . 3
((((a →3 b)⊥ ∩ (b →3 a)) ∪ ((a
→3 b)⊥
∩ (b →3 a)⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a)))) = ((a
∩ b⊥ ) ∪
((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) |
| 9 | | coman1 185 |
. . . . . . 7
(a ∩ b⊥ ) C a |
| 10 | 9 | comcom2 183 |
. . . . . . . 8
(a ∩ b⊥ ) C a⊥ |
| 11 | | coman2 186 |
. . . . . . . . 9
(a ∩ b⊥ ) C b⊥ |
| 12 | 11 | comcom7 460 |
. . . . . . . 8
(a ∩ b⊥ ) C b |
| 13 | 10, 12 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C (a⊥ ∪ b) |
| 14 | 9, 13 | fh3 471 |
. . . . . 6
((a ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) = (((a
∩ b⊥ ) ∪ a) ∩ ((a
∩ b⊥ ) ∪ (a⊥ ∪ b))) |
| 15 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ b⊥ ) ∪ a) = (a ∪
(a ∩ b⊥ )) |
| 16 | | orabs 120 |
. . . . . . . . 9
(a ∪ (a ∩ b⊥ )) = a |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . 8
((a ∩ b⊥ ) ∪ a) = a |
| 18 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∪ (a
∩ b⊥
)) |
| 19 | | anor1 88 |
. . . . . . . . . . 11
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 20 | 19 | lor 70 |
. . . . . . . . . 10
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) |
| 21 | | df-t 41 |
. . . . . . . . . . 11
1 = ((a⊥ ∪
b) ∪ (a⊥ ∪ b)⊥ ) |
| 22 | 21 | ax-r1 35 |
. . . . . . . . . 10
((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) = 1 |
| 23 | 20, 22 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) =
1 |
| 24 | 18, 23 | ax-r2 36 |
. . . . . . . 8
((a ∩ b⊥ ) ∪ (a⊥ ∪ b)) = 1 |
| 25 | 17, 24 | 2an 79 |
. . . . . . 7
(((a ∩ b⊥ ) ∪ a) ∩ ((a
∩ b⊥ ) ∪ (a⊥ ∪ b))) = (a ∩
1) |
| 26 | | an1 106 |
. . . . . . 7
(a ∩ 1) = a |
| 27 | 25, 26 | ax-r2 36 |
. . . . . 6
(((a ∩ b⊥ ) ∪ a) ∩ ((a
∩ b⊥ ) ∪ (a⊥ ∪ b))) = a |
| 28 | 14, 27 | ax-r2 36 |
. . . . 5
((a ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) = a |
| 29 | 28 | lor 70 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ ((a ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b⊥ ) ∪ a) |
| 30 | | or12 80 |
. . . 4
((a ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) = ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) |
| 31 | | ax-a2 31 |
. . . 4
(a ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ a) |
| 32 | 29, 30, 31 | 3tr1 63 |
. . 3
((a ∩ b⊥ ) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) = (a ∪
(a⊥ ∩ b⊥ )) |
| 33 | 8, 32 | ax-r2 36 |
. 2
((((a →3 b)⊥ ∩ (b →3 a)) ∪ ((a
→3 b)⊥
∩ (b →3 a)⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ (b →3 a)))) = (a ∪
(a⊥ ∩ b⊥ )) |
| 34 | 1, 33 | ax-r2 36 |
1
((a →3 b) →3 (b →3 a)) = (a ∪
(a⊥ ∩ b⊥ )) |