Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wcomcom5 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wcomcom5.1 | C (a⊥ , b⊥ ) = 1 |
Ref | Expression |
---|---|
wcomcom5 | C (a, b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wcomcom5.1 | . . . . 5 C (a⊥ , b⊥ ) = 1 | |
2 | 1 | wcomcom4 417 | . . . 4 C (a⊥ ⊥ , b⊥ ⊥ ) = 1 |
3 | 2 | wdf-c2 384 | . . 3 (a⊥ ⊥ ≡ ((a⊥ ⊥ ∩ b⊥ ⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ ⊥ ))) = 1 |
4 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
5 | 4 | bi1 118 | . . 3 (a ≡ a⊥ ⊥ ) = 1 |
6 | ax-a1 30 | . . . . . 6 b = b⊥ ⊥ | |
7 | 6 | bi1 118 | . . . . 5 (b ≡ b⊥ ⊥ ) = 1 |
8 | 5, 7 | w2an 373 | . . . 4 ((a ∩ b) ≡ (a⊥ ⊥ ∩ b⊥ ⊥ )) = 1 |
9 | ax-a1 30 | . . . . . 6 b⊥ = b⊥ ⊥ ⊥ | |
10 | 9 | bi1 118 | . . . . 5 (b⊥ ≡ b⊥ ⊥ ⊥ ) = 1 |
11 | 5, 10 | w2an 373 | . . . 4 ((a ∩ b⊥ ) ≡ (a⊥ ⊥ ∩ b⊥ ⊥ ⊥ )) = 1 |
12 | 8, 11 | w2or 372 | . . 3 (((a ∩ b) ∪ (a ∩ b⊥ )) ≡ ((a⊥ ⊥ ∩ b⊥ ⊥ ) ∪ (a⊥ ⊥ ∩ b⊥ ⊥ ⊥ ))) = 1 |
13 | 3, 5, 12 | w3tr1 374 | . 2 (a ≡ ((a ∩ b) ∪ (a ∩ b⊥ ))) = 1 |
14 | 13 | wdf-c1 383 | 1 C (a, b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 C wcmtr 29 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: wcomdr 421 wcom2an 428 woml6 436 woml7 437 |
Copyright terms: Public domain | W3C validator |