ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif Unicode version

Theorem binom1dif 11256
Description: A summation for the difference between  ( ( A  +  1 ) ^ N ) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9066 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
2 simpr 109 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
32nn0zd 9171 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ZZ )
4 peano2zm 9092 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
53, 4syl 14 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  -  1 )  e.  ZZ )
61, 5fzfigd 10204 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
7 fzssp1 9847 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
8 nn0cn 8987 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  CC )
98adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  CC )
10 ax-1cn 7713 . . . . . . . 8  |-  1  e.  CC
11 npcan 7971 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
129, 10, 11sylancl 409 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  - 
1 )  +  1 )  =  N )
1312oveq2d 5790 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
147, 13sseqtrid 3147 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
1514sselda 3097 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  k  e.  ( 0 ... N ) )
16 bccl2 10514 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  NN )
1716adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  NN )
1817nncnd 8734 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  CC )
19 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
20 elfznn0 9894 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
21 expcl 10311 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
2219, 20, 21syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( A ^
k )  e.  CC )
2318, 22mulcld 7786 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
2415, 23syldan 280 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
256, 24fsumcl 11169 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  e.  CC )
26 expcl 10311 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
27 addcom 7899 . . . . 5  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2819, 10, 27sylancl 409 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  +  1 )  =  ( 1  +  A ) )
2928oveq1d 5789 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( ( 1  +  A ) ^ N ) )
30 binom1p 11254 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
31 nn0uz 9360 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
322, 31eleqtrdi 2232 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= ` 
0 ) )
33 oveq2 5782 . . . . . 6  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
34 oveq2 5782 . . . . . 6  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
3533, 34oveq12d 5792 . . . . 5  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( A ^ k ) )  =  ( ( N  _C  N )  x.  ( A ^ N
) ) )
3632, 23, 35fsumm1 11185 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( ( N  _C  N
)  x.  ( A ^ N ) ) ) )
37 bcnn 10503 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
3837adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  _C  N
)  =  1 )
3938oveq1d 5789 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( 1  x.  ( A ^ N
) ) )
4026mulid2d 7784 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 1  x.  ( A ^ N ) )  =  ( A ^ N ) )
4139, 40eqtrd 2172 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( A ^ N ) )
4241oveq2d 5790 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( ( N  _C  N )  x.  ( A ^ N
) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4336, 42eqtrd 2172 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( A ^ N ) ) )
4429, 30, 433eqtrd 2176 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4525, 26, 44mvrraddd 8128 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    - cmin 7933   NNcn 8720   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790   ^cexp 10292    _C cbc 10493   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator