![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid2d | Unicode version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mulid2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mulid2 7168 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7119 ax-1cn 7120 ax-icn 7122 ax-addcl 7123 ax-mulcl 7125 ax-mulcom 7128 ax-mulass 7130 ax-distr 7131 ax-1rid 7134 ax-cnre 7138 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-iota 4891 df-fv 4934 df-ov 5540 |
This theorem is referenced by: adddirp1d 7196 mulsubfacd 7578 mulcanapd 7807 receuap 7815 divdivdivap 7857 divcanap5 7858 ltrec 8017 recp1lt1 8033 nndivtr 8136 xp1d2m1eqxm1d2 8339 gtndiv 8512 lincmb01cmp 9090 iccf1o 9091 modqfrac 9408 qnegmod 9440 addmodid 9443 m1expcl2 9584 expgt1 9600 ltexp2a 9614 leexp2a 9615 binom3 9676 faclbnd 9754 facavg 9759 ibcval5 9776 cvg1nlemcau 9997 resqrexlemover 10023 resqrexlemcalc2 10028 absimle 10097 maxabslemlub 10220 iddvds 10342 gcdaddm 10508 rpmulgcd 10548 prmind2 10635 qdencn 10928 |
Copyright terms: Public domain | W3C validator |