![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeq1 2088 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: ssequn2 3146 dfss1 3177 disj 3299 disjr 3300 undisj1 3308 undisj2 3309 uneqdifeqim 3335 reusn 3471 rabsneu 3473 eusn 3474 iin0r 3951 opeqsn 4015 unisuc 4176 onsucelsucexmid 4281 sucprcreg 4300 onintexmid 4323 dmopab3 4576 dm0rn0 4580 ssdmres 4661 imadisj 4717 args 4724 intirr 4741 dminxp 4795 dfrel3 4808 fntpg 4986 fncnv 4996 dff1o4 5165 dffv4g 5206 fvun2 5272 fnreseql 5309 riota1 5517 riota2df 5519 fnotovb 5579 ovid 5648 ov 5651 ovg 5670 f1od2 5887 frec0g 6046 diffitest 6421 prarloclem5 6752 renegcl 7436 elznn0 8447 sizeunlem 9828 maxclpr 10246 ex-ceil 10742 |
Copyright terms: Public domain | W3C validator |