![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqss | Unicode version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1417 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfcleq 2076 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | dfss2 2989 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | dfss2 2989 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | anbi12i 448 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | 3bitr4i 210 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: eqssi 3016 eqssd 3017 sseq1 3021 sseq2 3022 eqimss 3052 ssrabeq 3081 uneqin 3222 ss0b 3290 vss 3298 sssnm 3554 unidif 3641 ssunieq 3642 iuneq1 3699 iuneq2 3702 iunxdif2 3734 ssext 3984 pweqb 3986 eqopab2b 4042 pwunim 4049 soeq2 4079 iunpw 4237 ordunisuc2r 4266 tfi 4331 eqrel 4455 eqrelrel 4467 coeq1 4521 coeq2 4522 cnveq 4537 dmeq 4563 relssres 4676 xp11m 4789 xpcanm 4790 xpcan2m 4791 ssrnres 4793 fnres 5046 eqfnfv3 5299 fneqeql2 5308 fconst4m 5413 f1imaeq 5446 eqoprab2b 5594 fo1stresm 5819 fo2ndresm 5820 nnacan 6151 nnmcan 6158 isprm2 10643 bj-sseq 10753 bdeq0 10816 bdvsn 10823 bdop 10824 bdeqsuc 10830 bj-om 10890 |
Copyright terms: Public domain | W3C validator |