ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem Unicode version

Theorem frecuzrdgdomlem 10190
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgdomlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frecuzrdgdomlem  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y    x, G, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgdomlem
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . . 6  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgrclt 10188 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
7 frn 5281 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
9 dmss 4738 . . . 4  |-  ( ran 
R  C_  ( ( ZZ>=
`  C )  X.  S )  ->  dom  ran 
R  C_  dom  ( (
ZZ>= `  C )  X.  S ) )
108, 9syl 14 . . 3  |-  ( ph  ->  dom  ran  R  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
11 dmxpss 4969 . . 3  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
1210, 11sstrdi 3109 . 2  |-  ( ph  ->  dom  ran  R  C_  ( ZZ>=
`  C ) )
138adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ran  R  C_  ( ( ZZ>= `  C
)  X.  S ) )
14 ffun 5275 . . . . . . . . . . . 12  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  Fun  R )
156, 14syl 14 . . . . . . . . . . 11  |-  ( ph  ->  Fun  R )
1615adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  Fun  R )
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
181, 17frec2uzf1od 10179 . . . . . . . . . . . 12  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
19 f1ocnvdm 5682 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2018, 19sylan 281 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
21 fdm 5278 . . . . . . . . . . . . 13  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  dom  R  =  om )
226, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  om )
2322adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  dom  R  =  om )
2420, 23eleqtrrd 2219 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  dom  R )
25 fvelrn 5551 . . . . . . . . . 10  |-  ( ( Fun  R  /\  ( `' G `  v )  e.  dom  R )  ->  ( R `  ( `' G `  v ) )  e.  ran  R
)
2616, 24, 25syl2anc 408 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e. 
ran  R )
2713, 26sseldd 3098 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 1st2nd2 6073 . . . . . . . 8  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( R `  ( `' G `  v )
)  =  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. ( 1st `  ( R `  ( `' G `  v )
) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
301adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
312adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
323adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  S  C_  T
)
334adantlr 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10189 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  ( G `  ( `' G `  v ) ) )
35 f1ocnvfv2 5679 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  v ) )  =  v )
3618, 35sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  v ) )  =  v )
3734, 36eqtrd 2172 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  v )
3837opeq1d 3711 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  =  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >. )
3929, 38eqtrd 2172 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >. )
4039, 26eqeltrrd 2217 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
41 simpr 109 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
42 xp2nd 6064 . . . . . . 7  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
4327, 42syl 14 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
44 opeldmg 4744 . . . . . 6  |-  ( ( v  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4541, 43, 44syl2anc 408 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4640, 45mpd 13 . . . 4  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  ran  R )
4746ex 114 . . 3  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  ran  R ) )
4847ssrdv 3103 . 2  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  ran  R )
4912, 48eqssd 3114 1  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    C_ wss 3071   <.cop 3530    |-> cmpt 3989   omcom 4504    X. cxp 4537   `'ccnv 4538   dom cdm 4539   ran crn 4540   Fun wfun 5117   -->wf 5119   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037  freccfrec 6287   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  frecuzrdgdom  10191
  Copyright terms: Public domain W3C validator