ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisumr Unicode version

Theorem geoisumr 11290
Description: The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisumr  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Distinct variable group:    A, k

Proof of Theorem geoisumr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9363 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9069 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  0  e.  ZZ )
3 simpr 109 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
4 simpll 518 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A  e.  CC )
54abscld 10956 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
)  e.  RR )
6 0red 7770 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  e.  RR )
7 1red 7784 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  e.  RR )
8 0lt1 7892 . . . . . . . . 9  |-  0  <  1
98a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  1 )
10 simplr 519 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
1  <  ( abs `  A ) )
116, 7, 5, 9, 10lttrd 7891 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
0  <  ( abs `  A ) )
125, 11gt0ap0d 8394 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( abs `  A
) #  0 )
13 abs00ap 10837 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
1413ad2antrr 479 . . . . . 6  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( abs `  A
) #  0  <->  A #  0
) )
1512, 14mpbid 146 . . . . 5  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  ->  A #  0 )
164, 15recclapd 8544 . . . 4  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( 1  /  A
)  e.  CC )
1716, 3expcld 10427 . . 3  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( 1  /  A ) ^ k
)  e.  CC )
18 oveq2 5782 . . . 4  |-  ( n  =  k  ->  (
( 1  /  A
) ^ n )  =  ( ( 1  /  A ) ^
k ) )
19 eqid 2139 . . . 4  |-  ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) )
2018, 19fvmptg 5497 . . 3  |-  ( ( k  e.  NN0  /\  ( ( 1  /  A ) ^ k
)  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  A ) ^ n ) ) `
 k )  =  ( ( 1  /  A ) ^ k
) )
213, 17, 20syl2anc 408 . 2  |-  ( ( ( A  e.  CC  /\  1  <  ( abs `  A ) )  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( 1  /  A ) ^
n ) ) `  k )  =  ( ( 1  /  A
) ^ k ) )
22 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  A  e.  CC )
23 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  1  <  ( abs `  A
) )
2422, 23, 21georeclim 11285 . 2  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  /  A ) ^ n
) ) )  ~~>  ( A  /  ( A  - 
1 ) ) )
251, 2, 21, 17, 24isumclim 11193 1  |-  ( ( A  e.  CC  /\  1  <  ( abs `  A
) )  ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^
k )  =  ( A  /  ( A  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7621   0cc0 7623   1c1 7624    < clt 7803    - cmin 7936   # cap 8346    / cdiv 8435   NN0cn0 8980   ^cexp 10295   abscabs 10772   sum_csu 11125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-fz 9794  df-fzo 9923  df-seqfrec 10222  df-exp 10296  df-ihash 10525  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-clim 11051  df-sumdc 11126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator