ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadif Unicode version

Theorem imadif 5203
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )

Proof of Theorem imadif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 580 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
21exbii 1584 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <->  E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
3 19.40 1610 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
42, 3sylbi 120 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
5 nfv 1508 . . . . . . . . . . 11  |-  F/ x Fun  `' F
6 nfe1 1472 . . . . . . . . . . 11  |-  F/ x E. x ( x F y  /\  -.  x  e.  B )
75, 6nfan 1544 . . . . . . . . . 10  |-  F/ x
( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B )
)
8 funmo 5138 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  E* x  y `' F x )
9 vex 2689 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
10 vex 2689 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
119, 10brcnv 4722 . . . . . . . . . . . . . . 15  |-  ( y `' F x  <->  x F
y )
1211mobii 2036 . . . . . . . . . . . . . 14  |-  ( E* x  y `' F x 
<->  E* x  x F y )
138, 12sylib 121 . . . . . . . . . . . . 13  |-  ( Fun  `' F  ->  E* x  x F y )
14 mopick 2077 . . . . . . . . . . . . 13  |-  ( ( E* x  x F y  /\  E. x
( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1513, 14sylan 281 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1615con2d 613 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x  e.  B  ->  -.  x F y ) )
17 imnan 679 . . . . . . . . . . 11  |-  ( ( x  e.  B  ->  -.  x F y )  <->  -.  ( x  e.  B  /\  x F y ) )
1816, 17sylib 121 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  -.  ( x  e.  B  /\  x F y ) )
197, 18alrimi 1502 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  A. x  -.  (
x  e.  B  /\  x F y ) )
2019ex 114 . . . . . . . 8  |-  ( Fun  `' F  ->  ( E. x ( x F y  /\  -.  x  e.  B )  ->  A. x  -.  ( x  e.  B  /\  x F y ) ) )
21 exancom 1587 . . . . . . . 8  |-  ( E. x ( x F y  /\  -.  x  e.  B )  <->  E. x
( -.  x  e.  B  /\  x F y ) )
22 alnex 1475 . . . . . . . 8  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
2320, 21, 223imtr3g 203 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. x ( -.  x  e.  B  /\  x F y )  ->  -.  E. x ( x  e.  B  /\  x F y ) ) )
2423anim2d 335 . . . . . 6  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
254, 24syl5 32 . . . . 5  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
26 df-rex 2422 . . . . . 6  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
27 eldif 3080 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2827anbi1i 453 . . . . . . 7  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
2928exbii 1584 . . . . . 6  |-  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
3026, 29bitri 183 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
31 df-rex 2422 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
32 df-rex 2422 . . . . . . 7  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
3332notbii 657 . . . . . 6  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
3431, 33anbi12i 455 . . . . 5  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) )
3525, 30, 343imtr4g 204 . . . 4  |-  ( Fun  `' F  ->  ( E. x  e.  ( A 
\  B ) x F y  ->  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) ) )
3635ss2abdv 3170 . . 3  |-  ( Fun  `' F  ->  { y  |  E. x  e.  ( A  \  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) } )
37 dfima2 4883 . . 3  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
38 dfima2 4883 . . . . 5  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
39 dfima2 4883 . . . . 5  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
4038, 39difeq12i 3192 . . . 4  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
41 difab 3345 . . . 4  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4240, 41eqtri 2160 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4336, 37, 423sstr4g 3140 . 2  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  C_  ( ( F " A )  \  ( F " B ) ) )
44 imadiflem 5202 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
4544a1i 9 . 2  |-  ( Fun  `' F  ->  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) ) )
4643, 45eqssd 3114 1  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   E*wmo 2000   {cab 2125   E.wrex 2417    \ cdif 3068    C_ wss 3071   class class class wbr 3929   `'ccnv 4538   "cima 4542   Fun wfun 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125
This theorem is referenced by:  resdif  5389  difpreima  5547  phplem4  6749  phplem4dom  6756  phplem4on  6761  cnclima  12392
  Copyright terms: Public domain W3C validator