ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadif Unicode version

Theorem imadif 5007
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )

Proof of Theorem imadif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 533 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
21exbii 1512 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <->  E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
3 19.40 1538 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
42, 3sylbi 118 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
5 nfv 1437 . . . . . . . . . . 11  |-  F/ x Fun  `' F
6 nfe1 1401 . . . . . . . . . . 11  |-  F/ x E. x ( x F y  /\  -.  x  e.  B )
75, 6nfan 1473 . . . . . . . . . 10  |-  F/ x
( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B )
)
8 funmo 4945 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  E* x  y `' F x )
9 vex 2577 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
10 vex 2577 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
119, 10brcnv 4546 . . . . . . . . . . . . . . 15  |-  ( y `' F x  <->  x F
y )
1211mobii 1953 . . . . . . . . . . . . . 14  |-  ( E* x  y `' F x 
<->  E* x  x F y )
138, 12sylib 131 . . . . . . . . . . . . 13  |-  ( Fun  `' F  ->  E* x  x F y )
14 mopick 1994 . . . . . . . . . . . . 13  |-  ( ( E* x  x F y  /\  E. x
( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1513, 14sylan 271 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1615con2d 564 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x  e.  B  ->  -.  x F y ) )
17 imnan 634 . . . . . . . . . . 11  |-  ( ( x  e.  B  ->  -.  x F y )  <->  -.  ( x  e.  B  /\  x F y ) )
1816, 17sylib 131 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  -.  ( x  e.  B  /\  x F y ) )
197, 18alrimi 1431 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  A. x  -.  (
x  e.  B  /\  x F y ) )
2019ex 112 . . . . . . . 8  |-  ( Fun  `' F  ->  ( E. x ( x F y  /\  -.  x  e.  B )  ->  A. x  -.  ( x  e.  B  /\  x F y ) ) )
21 exancom 1515 . . . . . . . 8  |-  ( E. x ( x F y  /\  -.  x  e.  B )  <->  E. x
( -.  x  e.  B  /\  x F y ) )
22 alnex 1404 . . . . . . . 8  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
2320, 21, 223imtr3g 197 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. x ( -.  x  e.  B  /\  x F y )  ->  -.  E. x ( x  e.  B  /\  x F y ) ) )
2423anim2d 324 . . . . . 6  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
254, 24syl5 32 . . . . 5  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
26 df-rex 2329 . . . . . 6  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
27 eldif 2955 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2827anbi1i 439 . . . . . . 7  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
2928exbii 1512 . . . . . 6  |-  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
3026, 29bitri 177 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
31 df-rex 2329 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
32 df-rex 2329 . . . . . . 7  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
3332notbii 604 . . . . . 6  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
3431, 33anbi12i 441 . . . . 5  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) )
3525, 30, 343imtr4g 198 . . . 4  |-  ( Fun  `' F  ->  ( E. x  e.  ( A 
\  B ) x F y  ->  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) ) )
3635ss2abdv 3041 . . 3  |-  ( Fun  `' F  ->  { y  |  E. x  e.  ( A  \  B
) x F y }  C_  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) } )
37 dfima2 4698 . . 3  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
38 dfima2 4698 . . . . 5  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
39 dfima2 4698 . . . . 5  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
4038, 39difeq12i 3088 . . . 4  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
41 difab 3234 . . . 4  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4240, 41eqtri 2076 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
4336, 37, 423sstr4g 3014 . 2  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  C_  ( ( F " A )  \  ( F " B ) ) )
44 imadiflem 5006 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
4544a1i 9 . 2  |-  ( Fun  `' F  ->  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) ) )
4643, 45eqssd 2990 1  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   E*wmo 1917   {cab 2042   E.wrex 2324    \ cdif 2942    C_ wss 2945   class class class wbr 3792   `'ccnv 4372   "cima 4376   Fun wfun 4924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932
This theorem is referenced by:  resdif  5176  difpreima  5322  phplem4  6349  phplem4dom  6355  phplem4on  6360
  Copyright terms: Public domain W3C validator