ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr Unicode version

Theorem rdgtfr 6271
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Distinct variable groups:    A, g    x, g, z, F
Allowed substitution hints:    A( x, z, f)    F( f)    V( x, z, f, g)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2697 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 funmpt 5161 . . . 4  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
3 vex 2689 . . . . 5  |-  f  e. 
_V
4 vex 2689 . . . . . . . . . . 11  |-  g  e. 
_V
54dmex 4805 . . . . . . . . . 10  |-  dom  g  e.  _V
6 vex 2689 . . . . . . . . . . . . 13  |-  x  e. 
_V
74, 6fvex 5441 . . . . . . . . . . . 12  |-  ( g `
 x )  e. 
_V
8 fveq2 5421 . . . . . . . . . . . . 13  |-  ( z  =  ( g `  x )  ->  ( F `  z )  =  ( F `  ( g `  x
) ) )
98eleq1d 2208 . . . . . . . . . . . 12  |-  ( z  =  ( g `  x )  ->  (
( F `  z
)  e.  _V  <->  ( F `  ( g `  x
) )  e.  _V ) )
107, 9spcv 2779 . . . . . . . . . . 11  |-  ( A. z ( F `  z )  e.  _V  ->  ( F `  (
g `  x )
)  e.  _V )
1110ralrimivw 2506 . . . . . . . . . 10  |-  ( A. z ( F `  z )  e.  _V  ->  A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
12 iunexg 6017 . . . . . . . . . 10  |-  ( ( dom  g  e.  _V  /\ 
A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
135, 11, 12sylancr 410 . . . . . . . . 9  |-  ( A. z ( F `  z )  e.  _V  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
14 unexg 4364 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U_ x  e.  dom  g
( F `  (
g `  x )
)  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `
 x ) ) )  e.  _V )
1513, 14sylan2 284 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. z ( F `  z )  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  e.  _V )
1615ancoms 266 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V )
1716ralrimivw 2506 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  A. g  e.  _V  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  e.  _V )
18 dmmptg 5036 . . . . . 6  |-  ( A. g  e.  _V  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V  ->  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
1917, 18syl 14 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  dom  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
203, 19eleqtrrid 2229 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  f  e. 
dom  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
21 funfvex 5438 . . . 4  |-  ( ( Fun  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  /\  f  e.  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )  ->  (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
222, 20, 21sylancr 410 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
2322, 2jctil 310 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
241, 23sylan2 284 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    u. cun 3069   U_ciun 3813    |-> cmpt 3989   dom cdm 4539   Fun wfun 5117   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  rdgifnon2  6277
  Copyright terms: Public domain W3C validator