![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sps | Unicode version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sps |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1442 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sps.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-4 1441 |
This theorem is referenced by: 19.21ht 1514 exim 1531 alexdc 1551 19.2 1570 ax10o 1644 hbae 1647 cbv1h 1674 equvini 1682 equveli 1683 ax10oe 1719 drex1 1720 drsb1 1721 exdistrfor 1722 ax11v2 1742 equs5or 1752 sbequi 1761 drsb2 1763 spsbim 1765 sbcomxyyz 1888 hbsb4t 1931 mopick 2020 eupickbi 2024 ceqsalg 2628 mo2icl 2772 reu6 2782 sbcal 2866 csbie2t 2951 reldisj 3302 dfnfc2 3627 ssopab2 4038 eusvnfb 4212 mosubopt 4431 issref 4737 fv3 5229 fvmptt 5294 fnoprabg 5633 bj-exlimmp 10731 strcollnft 10937 |
Copyright terms: Public domain | W3C validator |