Step | Hyp | Ref
| Expression |
1 | | dfom3 4258 |
. . 3
⊢ 𝜔
= ∩ {y ∣
(∅ ∈ y ∧ ∀x ∈ y suc
x ∈
y)} |
2 | | peano1 4260 |
. . . . . . . 8
⊢ ∅
∈ 𝜔 |
3 | | elin 3120 |
. . . . . . . 8
⊢ (∅
∈ (𝜔 ∩ A) ↔ (∅ ∈ 𝜔 ∧
∅ ∈ A)) |
4 | 2, 3 | mpbiran 846 |
. . . . . . 7
⊢ (∅
∈ (𝜔 ∩ A) ↔ ∅ ∈ A) |
5 | 4 | biimpri 124 |
. . . . . 6
⊢ (∅
∈ A
→ ∅ ∈ (𝜔 ∩ A)) |
6 | | peano2 4261 |
. . . . . . . . . . . 12
⊢ (x ∈ 𝜔
→ suc x ∈ 𝜔) |
7 | 6 | adantr 261 |
. . . . . . . . . . 11
⊢
((x ∈ 𝜔 ∧
x ∈
A) → suc x ∈
𝜔) |
8 | 7 | a1i 9 |
. . . . . . . . . 10
⊢
((x ∈ 𝜔 → (x ∈ A → suc x
∈ A))
→ ((x ∈ 𝜔 ∧
x ∈
A) → suc x ∈
𝜔)) |
9 | | pm3.31 249 |
. . . . . . . . . 10
⊢
((x ∈ 𝜔 → (x ∈ A → suc x
∈ A))
→ ((x ∈ 𝜔 ∧
x ∈
A) → suc x ∈ A)) |
10 | 8, 9 | jcad 291 |
. . . . . . . . 9
⊢
((x ∈ 𝜔 → (x ∈ A → suc x
∈ A))
→ ((x ∈ 𝜔 ∧
x ∈
A) → (suc x ∈ 𝜔
∧ suc x
∈ A))) |
11 | 10 | alimi 1341 |
. . . . . . . 8
⊢ (∀x(x ∈ 𝜔
→ (x ∈ A → suc
x ∈
A)) → ∀x((x ∈ 𝜔
∧ x ∈ A) →
(suc x ∈
𝜔 ∧ suc x ∈ A))) |
12 | | df-ral 2305 |
. . . . . . . 8
⊢ (∀x ∈ 𝜔 (x
∈ A
→ suc x ∈ A) ↔
∀x(x ∈ 𝜔 → (x ∈ A → suc x
∈ A))) |
13 | | elin 3120 |
. . . . . . . . . 10
⊢ (x ∈ (𝜔
∩ A) ↔ (x ∈ 𝜔
∧ x ∈ A)) |
14 | | elin 3120 |
. . . . . . . . . 10
⊢ (suc
x ∈
(𝜔 ∩ A) ↔ (suc x ∈ 𝜔
∧ suc x
∈ A)) |
15 | 13, 14 | imbi12i 228 |
. . . . . . . . 9
⊢
((x ∈ (𝜔 ∩ A) → suc x
∈ (𝜔 ∩ A)) ↔ ((x
∈ 𝜔 ∧ x ∈ A) →
(suc x ∈
𝜔 ∧ suc x ∈ A))) |
16 | 15 | albii 1356 |
. . . . . . . 8
⊢ (∀x(x ∈ (𝜔
∩ A) → suc x ∈ (𝜔
∩ A)) ↔ ∀x((x ∈ 𝜔
∧ x ∈ A) →
(suc x ∈
𝜔 ∧ suc x ∈ A))) |
17 | 11, 12, 16 | 3imtr4i 190 |
. . . . . . 7
⊢ (∀x ∈ 𝜔 (x
∈ A
→ suc x ∈ A) →
∀x(x ∈ (𝜔 ∩ A) → suc x
∈ (𝜔 ∩ A))) |
18 | | df-ral 2305 |
. . . . . . 7
⊢ (∀x ∈ (𝜔 ∩ A)suc x ∈ (𝜔 ∩ A) ↔ ∀x(x ∈ (𝜔
∩ A) → suc x ∈ (𝜔
∩ A))) |
19 | 17, 18 | sylibr 137 |
. . . . . 6
⊢ (∀x ∈ 𝜔 (x
∈ A
→ suc x ∈ A) →
∀x
∈ (𝜔 ∩ A)suc x ∈ (𝜔 ∩ A)) |
20 | 5, 19 | anim12i 321 |
. . . . 5
⊢ ((∅
∈ A ∧ ∀x ∈ 𝜔
(x ∈
A → suc x ∈ A)) → (∅ ∈ (𝜔 ∩ A) ∧ ∀x ∈ (𝜔 ∩ A)suc x ∈ (𝜔 ∩ A))) |
21 | | omex 4259 |
. . . . . . 7
⊢ 𝜔
∈ V |
22 | 21 | inex1 3882 |
. . . . . 6
⊢
(𝜔 ∩ A) ∈ V |
23 | | eleq2 2098 |
. . . . . . 7
⊢ (y = (𝜔 ∩ A) → (∅ ∈ y ↔
∅ ∈ (𝜔 ∩ A))) |
24 | | eleq2 2098 |
. . . . . . . 8
⊢ (y = (𝜔 ∩ A) → (suc x
∈ y
↔ suc x ∈ (𝜔 ∩ A))) |
25 | 24 | raleqbi1dv 2507 |
. . . . . . 7
⊢ (y = (𝜔 ∩ A) → (∀x ∈ y suc
x ∈
y ↔ ∀x ∈ (𝜔 ∩ A)suc x ∈ (𝜔 ∩ A))) |
26 | 23, 25 | anbi12d 442 |
. . . . . 6
⊢ (y = (𝜔 ∩ A) → ((∅ ∈ y ∧ ∀x ∈ y suc x ∈ y) ↔
(∅ ∈ (𝜔 ∩ A) ∧ ∀x ∈ (𝜔 ∩ A)suc x ∈ (𝜔 ∩ A)))) |
27 | 22, 26 | elab 2681 |
. . . . 5
⊢
((𝜔 ∩ A) ∈ {y ∣
(∅ ∈ y ∧ ∀x ∈ y suc
x ∈
y)} ↔ (∅ ∈ (𝜔 ∩ A) ∧ ∀x ∈ (𝜔 ∩ A)suc x ∈ (𝜔 ∩ A))) |
28 | 20, 27 | sylibr 137 |
. . . 4
⊢ ((∅
∈ A ∧ ∀x ∈ 𝜔
(x ∈
A → suc x ∈ A)) → (𝜔 ∩ A) ∈ {y ∣ (∅ ∈ y ∧ ∀x ∈ y suc x ∈ y)}) |
29 | | intss1 3621 |
. . . 4
⊢
((𝜔 ∩ A) ∈ {y ∣
(∅ ∈ y ∧ ∀x ∈ y suc
x ∈
y)} → ∩
{y ∣ (∅ ∈ y ∧ ∀x ∈ y suc x ∈ y)} ⊆
(𝜔 ∩ A)) |
30 | 28, 29 | syl 14 |
. . 3
⊢ ((∅
∈ A ∧ ∀x ∈ 𝜔
(x ∈
A → suc x ∈ A)) → ∩ {y ∣ (∅ ∈ y ∧ ∀x ∈ y suc x ∈ y)} ⊆
(𝜔 ∩ A)) |
31 | 1, 30 | syl5eqss 2983 |
. 2
⊢ ((∅
∈ A ∧ ∀x ∈ 𝜔
(x ∈
A → suc x ∈ A)) → 𝜔 ⊆ (𝜔 ∩
A)) |
32 | | ssid 2958 |
. . . 4
⊢ 𝜔
⊆ 𝜔 |
33 | 32 | biantrur 287 |
. . 3
⊢
(𝜔 ⊆ A ↔
(𝜔 ⊆ 𝜔 ∧ 𝜔
⊆ A)) |
34 | | ssin 3153 |
. . 3
⊢
((𝜔 ⊆ 𝜔 ∧
𝜔 ⊆ A) ↔ 𝜔
⊆ (𝜔 ∩ A)) |
35 | 33, 34 | bitri 173 |
. 2
⊢
(𝜔 ⊆ A ↔
𝜔 ⊆ (𝜔 ∩ A)) |
36 | 31, 35 | sylibr 137 |
1
⊢ ((∅
∈ A ∧ ∀x ∈ 𝜔
(x ∈
A → suc x ∈ A)) → 𝜔 ⊆ A) |