Step | Hyp | Ref
| Expression |
1 | | 0ex 3875 |
. . . . 5
⊢ ∅
∈ V |
2 | | snfig 6227 |
. . . . 5
⊢ (∅
∈ V → {∅} ∈ Fin) |
3 | 1, 2 | ax-mp 7 |
. . . 4
⊢ {∅}
∈ Fin |
4 | | ssrab2 3019 |
. . . 4
⊢ {z ∈ {∅}
∣ φ} ⊆
{∅} |
5 | | ssfiexmid.1 |
. . . . . 6
⊢ ∀x∀y((x ∈ Fin ∧ y ⊆
x) → y ∈
Fin) |
6 | | p0ex 3930 |
. . . . . . 7
⊢ {∅}
∈ V |
7 | | eleq1 2097 |
. . . . . . . . . 10
⊢ (x = {∅} → (x ∈ Fin ↔
{∅} ∈ Fin)) |
8 | | sseq2 2961 |
. . . . . . . . . 10
⊢ (x = {∅} → (y ⊆ x
↔ y ⊆
{∅})) |
9 | 7, 8 | anbi12d 442 |
. . . . . . . . 9
⊢ (x = {∅} → ((x ∈ Fin ∧ y ⊆
x) ↔ ({∅} ∈ Fin ∧ y ⊆ {∅}))) |
10 | 9 | imbi1d 220 |
. . . . . . . 8
⊢ (x = {∅} → (((x ∈ Fin ∧ y ⊆
x) → y ∈ Fin) ↔
(({∅} ∈ Fin ∧ y ⊆
{∅}) → y ∈ Fin))) |
11 | 10 | albidv 1702 |
. . . . . . 7
⊢ (x = {∅} → (∀y((x ∈ Fin ∧ y ⊆
x) → y ∈ Fin) ↔
∀y(({∅} ∈ Fin
∧ y
⊆ {∅}) → y ∈ Fin))) |
12 | 6, 11 | spcv 2640 |
. . . . . 6
⊢ (∀x∀y((x ∈ Fin ∧ y ⊆
x) → y ∈ Fin) →
∀y(({∅} ∈ Fin
∧ y
⊆ {∅}) → y ∈ Fin)) |
13 | 5, 12 | ax-mp 7 |
. . . . 5
⊢ ∀y(({∅}
∈ Fin ∧
y ⊆ {∅}) → y ∈
Fin) |
14 | 6 | rabex 3892 |
. . . . . 6
⊢ {z ∈ {∅}
∣ φ} ∈ V |
15 | | sseq1 2960 |
. . . . . . . 8
⊢ (y = {z ∈ {∅} ∣ φ} → (y ⊆ {∅} ↔ {z ∈ {∅}
∣ φ} ⊆
{∅})) |
16 | 15 | anbi2d 437 |
. . . . . . 7
⊢ (y = {z ∈ {∅} ∣ φ} → (({∅} ∈ Fin ∧ y ⊆ {∅}) ↔ ({∅} ∈ Fin ∧ {z ∈ {∅}
∣ φ} ⊆
{∅}))) |
17 | | eleq1 2097 |
. . . . . . 7
⊢ (y = {z ∈ {∅} ∣ φ} → (y ∈ Fin ↔
{z ∈
{∅} ∣ φ} ∈ Fin)) |
18 | 16, 17 | imbi12d 223 |
. . . . . 6
⊢ (y = {z ∈ {∅} ∣ φ} → ((({∅} ∈ Fin ∧ y ⊆ {∅}) → y ∈ Fin) ↔
(({∅} ∈ Fin ∧ {z ∈ {∅} ∣ φ} ⊆ {∅}) → {z ∈ {∅}
∣ φ} ∈ Fin))) |
19 | 14, 18 | spcv 2640 |
. . . . 5
⊢ (∀y(({∅}
∈ Fin ∧
y ⊆ {∅}) → y ∈ Fin) →
(({∅} ∈ Fin ∧ {z ∈ {∅} ∣ φ} ⊆ {∅}) → {z ∈ {∅}
∣ φ} ∈ Fin)) |
20 | 13, 19 | ax-mp 7 |
. . . 4
⊢
(({∅} ∈ Fin ∧ {z ∈ {∅} ∣ φ} ⊆ {∅}) → {z ∈ {∅}
∣ φ} ∈ Fin) |
21 | 3, 4, 20 | mp2an 402 |
. . 3
⊢ {z ∈ {∅}
∣ φ} ∈ Fin |
22 | | isfi 6177 |
. . 3
⊢
({z ∈ {∅} ∣ φ} ∈ Fin
↔ ∃𝑛 ∈
𝜔 {z ∈ {∅} ∣ φ} ≈ 𝑛) |
23 | 21, 22 | mpbi 133 |
. 2
⊢ ∃𝑛 ∈
𝜔 {z ∈ {∅} ∣ φ} ≈ 𝑛 |
24 | | 0elnn 4283 |
. . . . 5
⊢ (𝑛 ∈ 𝜔 → (𝑛 = ∅ ∨
∅ ∈ 𝑛)) |
25 | | breq2 3759 |
. . . . . . . . . 10
⊢ (𝑛 = ∅ → ({z ∈ {∅}
∣ φ} ≈ 𝑛 ↔ {z ∈ {∅}
∣ φ} ≈
∅)) |
26 | | en0 6211 |
. . . . . . . . . 10
⊢
({z ∈ {∅} ∣ φ} ≈ ∅ ↔ {z ∈ {∅}
∣ φ} = ∅) |
27 | 25, 26 | syl6bb 185 |
. . . . . . . . 9
⊢ (𝑛 = ∅ → ({z ∈ {∅}
∣ φ} ≈ 𝑛 ↔ {z ∈ {∅}
∣ φ} = ∅)) |
28 | 27 | biimpac 282 |
. . . . . . . 8
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ 𝑛 = ∅) → {z ∈ {∅}
∣ φ} = ∅) |
29 | | rabeq0 3241 |
. . . . . . . . 9
⊢
({z ∈ {∅} ∣ φ} = ∅ ↔ ∀z ∈ {∅} ¬ φ) |
30 | 1 | snm 3479 |
. . . . . . . . . 10
⊢ ∃w w ∈
{∅} |
31 | | r19.3rmv 3306 |
. . . . . . . . . 10
⊢ (∃w w ∈ {∅}
→ (¬ φ ↔ ∀z ∈ {∅} ¬ φ)) |
32 | 30, 31 | ax-mp 7 |
. . . . . . . . 9
⊢ (¬
φ ↔ ∀z ∈ {∅} ¬ φ) |
33 | 29, 32 | bitr4i 176 |
. . . . . . . 8
⊢
({z ∈ {∅} ∣ φ} = ∅ ↔ ¬ φ) |
34 | 28, 33 | sylib 127 |
. . . . . . 7
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ 𝑛 = ∅) → ¬ φ) |
35 | 34 | olcd 652 |
. . . . . 6
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ 𝑛 = ∅) → (φ ∨ ¬
φ)) |
36 | | ensym 6197 |
. . . . . . . 8
⊢
({z ∈ {∅} ∣ φ} ≈ 𝑛 → 𝑛 ≈ {z ∈ {∅}
∣ φ}) |
37 | | elex2 2564 |
. . . . . . . 8
⊢ (∅
∈ 𝑛 → ∃x x ∈ 𝑛) |
38 | | enm 6230 |
. . . . . . . 8
⊢ ((𝑛 ≈ {z ∈ {∅}
∣ φ} ∧ ∃x x ∈ 𝑛) → ∃y y ∈ {z ∈ {∅}
∣ φ}) |
39 | 36, 37, 38 | syl2an 273 |
. . . . . . 7
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ ∅
∈ 𝑛) → ∃y y ∈ {z ∈ {∅}
∣ φ}) |
40 | | biidd 161 |
. . . . . . . . . . 11
⊢ (z = y →
(φ ↔ φ)) |
41 | 40 | elrab 2692 |
. . . . . . . . . 10
⊢ (y ∈ {z ∈ {∅}
∣ φ} ↔ (y ∈ {∅}
∧ φ)) |
42 | 41 | simprbi 260 |
. . . . . . . . 9
⊢ (y ∈ {z ∈ {∅}
∣ φ} → φ) |
43 | 42 | orcd 651 |
. . . . . . . 8
⊢ (y ∈ {z ∈ {∅}
∣ φ} → (φ ∨ ¬
φ)) |
44 | 43 | exlimiv 1486 |
. . . . . . 7
⊢ (∃y y ∈ {z ∈ {∅}
∣ φ} → (φ ∨ ¬
φ)) |
45 | 39, 44 | syl 14 |
. . . . . 6
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ ∅
∈ 𝑛) → (φ ∨ ¬
φ)) |
46 | 35, 45 | jaodan 709 |
. . . . 5
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ (𝑛 = ∅
∨ ∅ ∈ 𝑛)) → (φ ∨ ¬
φ)) |
47 | 24, 46 | sylan2 270 |
. . . 4
⊢
(({z ∈ {∅} ∣ φ} ≈ 𝑛 ∧ 𝑛 ∈ 𝜔) → (φ ∨ ¬
φ)) |
48 | 47 | ancoms 255 |
. . 3
⊢ ((𝑛 ∈ 𝜔 ∧
{z ∈
{∅} ∣ φ} ≈ 𝑛) → (φ ∨ ¬
φ)) |
49 | 48 | rexlimiva 2422 |
. 2
⊢ (∃𝑛 ∈
𝜔 {z ∈ {∅} ∣ φ} ≈ 𝑛 → (φ ∨ ¬
φ)) |
50 | 23, 49 | ax-mp 7 |
1
⊢ (φ ∨ ¬
φ) |