![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssfiexmid | GIF version |
Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
ssfiexmid.1 | ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
Ref | Expression |
---|---|
ssfiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4156 | . . . 4 ⊢ ∅ ∈ V | |
2 | snfig 6868 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
4 | ssrab2 3264 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
5 | ssfiexmid.1 | . . . . 5 ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
6 | p0ex 4217 | . . . . . 6 ⊢ {∅} ∈ V | |
7 | eleq1 2256 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin)) | |
8 | sseq2 3203 | . . . . . . . . 9 ⊢ (𝑥 = {∅} → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ {∅})) | |
9 | 7, 8 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}))) |
10 | 9 | imbi1d 231 | . . . . . . 7 ⊢ (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
11 | 10 | albidv 1835 | . . . . . 6 ⊢ (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin))) |
12 | 6, 11 | spcv 2854 | . . . . 5 ⊢ (∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin)) |
13 | 5, 12 | ax-mp 5 | . . . 4 ⊢ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) |
14 | 6 | rabex 4173 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
15 | sseq1 3202 | . . . . . . 7 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
16 | 15 | anbi2d 464 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))) |
17 | eleq1 2256 | . . . . . 6 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) | |
18 | 16, 17 | imbi12d 234 | . . . . 5 ⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))) |
19 | 14, 18 | spcv 2854 | . . . 4 ⊢ (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) |
20 | 13, 19 | ax-mp 5 | . . 3 ⊢ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin) |
21 | 3, 4, 20 | mp2an 426 | . 2 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
22 | 21 | ssfilem 6931 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ⊆ wss 3153 ∅c0 3446 {csn 3618 Fincfn 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1o 6469 df-er 6587 df-en 6795 df-fin 6797 |
This theorem is referenced by: infiexmid 6933 |
Copyright terms: Public domain | W3C validator |