Step | Hyp | Ref
| Expression |
1 | | df-pr 3423 |
. . . . 5
⊢ {{𝑧 ∈ 1𝑜
∣ 𝜑},
1𝑜} = ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪
{1𝑜}) |
2 | | unfiexmid.1 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) |
3 | 2 | rgen2a 2422 |
. . . . . 6
⊢
∀𝑥 ∈ Fin
∀𝑦 ∈ Fin (𝑥 ∪ 𝑦) ∈ Fin |
4 | | df1o2 6097 |
. . . . . . . . . 10
⊢
1𝑜 = {∅} |
5 | | rabeq 2602 |
. . . . . . . . . 10
⊢
(1𝑜 = {∅} → {𝑧 ∈ 1𝑜 ∣ 𝜑} = {𝑧 ∈ {∅} ∣ 𝜑}) |
6 | 4, 5 | ax-mp 7 |
. . . . . . . . 9
⊢ {𝑧 ∈ 1𝑜
∣ 𝜑} = {𝑧 ∈ {∅} ∣ 𝜑} |
7 | | ordtriexmidlem 4291 |
. . . . . . . . 9
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ On |
8 | 6, 7 | eqeltri 2155 |
. . . . . . . 8
⊢ {𝑧 ∈ 1𝑜
∣ 𝜑} ∈
On |
9 | | snfig 6380 |
. . . . . . . 8
⊢ ({𝑧 ∈ 1𝑜
∣ 𝜑} ∈ On →
{{𝑧 ∈
1𝑜 ∣ 𝜑}} ∈ Fin) |
10 | 8, 9 | ax-mp 7 |
. . . . . . 7
⊢ {{𝑧 ∈ 1𝑜
∣ 𝜑}} ∈
Fin |
11 | | 1onn 6180 |
. . . . . . . 8
⊢
1𝑜 ∈ ω |
12 | | snfig 6380 |
. . . . . . . 8
⊢
(1𝑜 ∈ ω → {1𝑜}
∈ Fin) |
13 | 11, 12 | ax-mp 7 |
. . . . . . 7
⊢
{1𝑜} ∈ Fin |
14 | | uneq1 3129 |
. . . . . . . . 9
⊢ (𝑥 = {{𝑧 ∈ 1𝑜 ∣ 𝜑}} → (𝑥 ∪ 𝑦) = ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪ 𝑦)) |
15 | 14 | eleq1d 2151 |
. . . . . . . 8
⊢ (𝑥 = {{𝑧 ∈ 1𝑜 ∣ 𝜑}} → ((𝑥 ∪ 𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪ 𝑦) ∈ Fin)) |
16 | | uneq2 3130 |
. . . . . . . . 9
⊢ (𝑦 = {1𝑜}
→ ({{𝑧 ∈
1𝑜 ∣ 𝜑}} ∪ 𝑦) = ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪
{1𝑜})) |
17 | 16 | eleq1d 2151 |
. . . . . . . 8
⊢ (𝑦 = {1𝑜}
→ (({{𝑧 ∈
1𝑜 ∣ 𝜑}} ∪ 𝑦) ∈ Fin ↔ ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪ {1𝑜})
∈ Fin)) |
18 | 15, 17 | rspc2v 2721 |
. . . . . . 7
⊢ (({{𝑧 ∈ 1𝑜
∣ 𝜑}} ∈ Fin ∧
{1𝑜} ∈ Fin) → (∀𝑥 ∈ Fin ∀𝑦 ∈ Fin (𝑥 ∪ 𝑦) ∈ Fin → ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪ {1𝑜})
∈ Fin)) |
19 | 10, 13, 18 | mp2an 417 |
. . . . . 6
⊢
(∀𝑥 ∈
Fin ∀𝑦 ∈ Fin
(𝑥 ∪ 𝑦) ∈ Fin → ({{𝑧 ∈ 1𝑜 ∣ 𝜑}} ∪ {1𝑜})
∈ Fin) |
20 | 3, 19 | ax-mp 7 |
. . . . 5
⊢ ({{𝑧 ∈ 1𝑜
∣ 𝜑}} ∪
{1𝑜}) ∈ Fin |
21 | 1, 20 | eqeltri 2155 |
. . . 4
⊢ {{𝑧 ∈ 1𝑜
∣ 𝜑},
1𝑜} ∈ Fin |
22 | 8 | elexi 2620 |
. . . . 5
⊢ {𝑧 ∈ 1𝑜
∣ 𝜑} ∈
V |
23 | 22 | prid1 3516 |
. . . 4
⊢ {𝑧 ∈ 1𝑜
∣ 𝜑} ∈ {{𝑧 ∈ 1𝑜
∣ 𝜑},
1𝑜} |
24 | 11 | elexi 2620 |
. . . . 5
⊢
1𝑜 ∈ V |
25 | 24 | prid2 3517 |
. . . 4
⊢
1𝑜 ∈ {{𝑧 ∈ 1𝑜 ∣ 𝜑},
1𝑜} |
26 | | fidceq 6425 |
. . . 4
⊢ (({{𝑧 ∈ 1𝑜
∣ 𝜑},
1𝑜} ∈ Fin ∧ {𝑧 ∈ 1𝑜 ∣ 𝜑} ∈ {{𝑧 ∈ 1𝑜 ∣ 𝜑}, 1𝑜} ∧
1𝑜 ∈ {{𝑧 ∈ 1𝑜 ∣ 𝜑}, 1𝑜}) →
DECID {𝑧
∈ 1𝑜 ∣ 𝜑} = 1𝑜) |
27 | 21, 23, 25, 26 | mp3an 1269 |
. . 3
⊢
DECID {𝑧 ∈ 1𝑜 ∣ 𝜑} =
1𝑜 |
28 | | exmiddc 778 |
. . 3
⊢
(DECID {𝑧 ∈ 1𝑜 ∣ 𝜑} = 1𝑜 →
({𝑧 ∈
1𝑜 ∣ 𝜑} = 1𝑜 ∨ ¬ {𝑧 ∈ 1𝑜
∣ 𝜑} =
1𝑜)) |
29 | 27, 28 | ax-mp 7 |
. 2
⊢ ({𝑧 ∈ 1𝑜
∣ 𝜑} =
1𝑜 ∨ ¬ {𝑧 ∈ 1𝑜 ∣ 𝜑} =
1𝑜) |
30 | 4 | eqeq2i 2093 |
. . . 4
⊢ ({𝑧 ∈ 1𝑜
∣ 𝜑} =
1𝑜 ↔ {𝑧 ∈ 1𝑜 ∣ 𝜑} = {∅}) |
31 | | 0ex 3925 |
. . . . 5
⊢ ∅
∈ V |
32 | | biidd 170 |
. . . . 5
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) |
33 | 31, 32 | rabsnt 3485 |
. . . 4
⊢ ({𝑧 ∈ 1𝑜
∣ 𝜑} = {∅} →
𝜑) |
34 | 30, 33 | sylbi 119 |
. . 3
⊢ ({𝑧 ∈ 1𝑜
∣ 𝜑} =
1𝑜 → 𝜑) |
35 | | iba 294 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ 1𝑜 ↔ (𝑧 ∈ 1𝑜
∧ 𝜑))) |
36 | 35 | abbi2dv 2201 |
. . . . 5
⊢ (𝜑 → 1𝑜 =
{𝑧 ∣ (𝑧 ∈ 1𝑜
∧ 𝜑)}) |
37 | | df-rab 2362 |
. . . . 5
⊢ {𝑧 ∈ 1𝑜
∣ 𝜑} = {𝑧 ∣ (𝑧 ∈ 1𝑜 ∧ 𝜑)} |
38 | 36, 37 | syl6reqr 2134 |
. . . 4
⊢ (𝜑 → {𝑧 ∈ 1𝑜 ∣ 𝜑} =
1𝑜) |
39 | 38 | con3i 595 |
. . 3
⊢ (¬
{𝑧 ∈
1𝑜 ∣ 𝜑} = 1𝑜 → ¬ 𝜑) |
40 | 34, 39 | orim12i 709 |
. 2
⊢ (({𝑧 ∈ 1𝑜
∣ 𝜑} =
1𝑜 ∨ ¬ {𝑧 ∈ 1𝑜 ∣ 𝜑} = 1𝑜) →
(𝜑 ∨ ¬ 𝜑)) |
41 | 29, 40 | ax-mp 7 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |