![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ztri3or | GIF version |
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
ztri3or | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 8550 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
2 | ztri3or0 8551 | . . 3 ⊢ ((𝑀 − 𝑁) ∈ ℤ → ((𝑀 − 𝑁) < 0 ∨ (𝑀 − 𝑁) = 0 ∨ 0 < (𝑀 − 𝑁))) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) < 0 ∨ (𝑀 − 𝑁) = 0 ∨ 0 < (𝑀 − 𝑁))) |
4 | zre 8513 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | 4 | adantr 270 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
6 | zre 8513 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
7 | 6 | adantl 271 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
8 | 5, 7 | posdifd 7776 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁 − 𝑀))) |
9 | 7, 5 | resubcld 7629 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℝ) |
10 | 9 | lt0neg2d 7761 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁 − 𝑀) ↔ -(𝑁 − 𝑀) < 0)) |
11 | 7 | recnd 7286 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
12 | 5 | recnd 7286 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
13 | 11, 12 | negsubdi2d 7579 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁 − 𝑀) = (𝑀 − 𝑁)) |
14 | 13 | breq1d 3816 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁 − 𝑀) < 0 ↔ (𝑀 − 𝑁) < 0)) |
15 | 8, 10, 14 | 3bitrd 212 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 − 𝑁) < 0)) |
16 | 12, 11 | subeq0ad 7573 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) |
17 | 16 | bicomd 139 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 − 𝑁) = 0)) |
18 | 7, 5 | posdifd 7776 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀 − 𝑁))) |
19 | 15, 17, 18 | 3orbi123d 1243 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 − 𝑁) < 0 ∨ (𝑀 − 𝑁) = 0 ∨ 0 < (𝑀 − 𝑁)))) |
20 | 3, 19 | mpbird 165 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ w3o 919 = wceq 1285 ∈ wcel 1434 class class class wbr 3806 (class class class)co 5565 ℝcr 7119 0cc0 7120 < clt 7292 − cmin 7423 -cneg 7424 ℤcz 8509 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-cnex 7206 ax-resscn 7207 ax-1cn 7208 ax-1re 7209 ax-icn 7210 ax-addcl 7211 ax-addrcl 7212 ax-mulcl 7213 ax-addcom 7215 ax-addass 7217 ax-distr 7219 ax-i2m1 7220 ax-0lt1 7221 ax-0id 7223 ax-rnegex 7224 ax-cnre 7226 ax-pre-ltirr 7227 ax-pre-ltwlin 7228 ax-pre-lttrn 7229 ax-pre-ltadd 7231 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2613 df-sbc 2826 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-opab 3861 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-iota 4918 df-fun 4955 df-fv 4961 df-riota 5521 df-ov 5568 df-oprab 5569 df-mpt2 5570 df-pnf 7294 df-mnf 7295 df-xr 7296 df-ltxr 7297 df-le 7298 df-sub 7425 df-neg 7426 df-inn 8184 df-n0 8433 df-z 8510 |
This theorem is referenced by: zletric 8553 zlelttric 8554 zltnle 8555 zleloe 8556 zapne 8580 zdceq 8581 zdcle 8582 zdclt 8583 uzm1 8807 qtri3or 9406 divalglemeunn 10553 divalglemeuneg 10555 znege1 10788 |
Copyright terms: Public domain | W3C validator |