MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Visualization version   GIF version

Theorem axdclem 9288
Description: Lemma for axdc 9290. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝐾,𝑧   𝑦,𝑔   𝑦,𝑠   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)   𝐾(𝑥,𝑔,𝑠)

Proof of Theorem axdclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2852 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅))
2 abn0 3930 . . . . . . 7 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧)
31, 2syl6bb 276 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧))
4 eleq2 2687 . . . . . . . . 9 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
5 breq2 4619 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥𝑧))
65cbvabv 2744 . . . . . . . . . 10 {𝑤 ∣ (𝐹𝐾)𝑥𝑤} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧}
76eleq2i 2690 . . . . . . . . 9 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
84, 7syl6bbr 278 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤}))
9 fvex 6160 . . . . . . . . 9 (𝑔𝑦) ∈ V
10 breq2 4619 . . . . . . . . 9 (𝑤 = (𝑔𝑦) → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
119, 10elab 3334 . . . . . . . 8 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝐹𝐾)𝑥(𝑔𝑦))
128, 11syl6bb 276 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
13 fveq2 6150 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑔𝑦) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
1413breq2d 4627 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝐹𝐾)𝑥(𝑔𝑦) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
1512, 14bitrd 268 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
163, 15imbi12d 334 . . . . 5 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
1716rspcv 3291 . . . 4 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
18 fvex 6160 . . . . . . . 8 (𝐹𝐾) ∈ V
19 vex 3189 . . . . . . . 8 𝑧 ∈ V
2018, 19brelrn 5318 . . . . . . 7 ((𝐹𝐾)𝑥𝑧𝑧 ∈ ran 𝑥)
2120abssi 3658 . . . . . 6 {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥
22 sstr 3592 . . . . . 6 (({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥 ∧ ran 𝑥 ⊆ dom 𝑥) → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2321, 22mpan 705 . . . . 5 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
24 vex 3189 . . . . . . 7 𝑥 ∈ V
2524dmex 7049 . . . . . 6 dom 𝑥 ∈ V
2625elpw2 4790 . . . . 5 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2723, 26sylibr 224 . . . 4 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥)
2817, 27syl11 33 . . 3 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (ran 𝑥 ⊆ dom 𝑥 → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
29283imp 1254 . 2 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
30 fvex 6160 . . . 4 (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V
31 nfcv 2761 . . . . 5 𝑦𝑠
32 nfcv 2761 . . . . 5 𝑦𝐾
33 nfcv 2761 . . . . 5 𝑦(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})
34 axdclem.1 . . . . 5 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
35 breq1 4618 . . . . . . 7 (𝑦 = (𝐹𝐾) → (𝑦𝑥𝑧 ↔ (𝐹𝐾)𝑥𝑧))
3635abbidv 2738 . . . . . 6 (𝑦 = (𝐹𝐾) → {𝑧𝑦𝑥𝑧} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
3736fveq2d 6154 . . . . 5 (𝑦 = (𝐹𝐾) → (𝑔‘{𝑧𝑦𝑥𝑧}) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3831, 32, 33, 34, 37frsucmpt 7481 . . . 4 ((𝐾 ∈ ω ∧ (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V) → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3930, 38mpan2 706 . . 3 (𝐾 ∈ ω → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
4039breq2d 4627 . 2 (𝐾 ∈ ω → ((𝐹𝐾)𝑥(𝐹‘suc 𝐾) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
4129, 40syl5ibrcom 237 1 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  Vcvv 3186  wss 3556  c0 3893  𝒫 cpw 4132   class class class wbr 4615  cmpt 4675  dom cdm 5076  ran crn 5077  cres 5078  suc csuc 5686  cfv 5849  ωcom 7015  reccrdg 7453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454
This theorem is referenced by:  axdclem2  9289
  Copyright terms: Public domain W3C validator