![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem11 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 26040. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem11 | ⊢ (𝑄‘(𝐼 + 1)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem10.1 | . . 3 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
2 | 1 | fveq1i 6353 | . 2 ⊢ (𝑄‘(𝐼 + 1)) = (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) |
3 | ovex 6841 | . . . 4 ⊢ (𝐼 + 1) ∈ V | |
4 | 1ex 10227 | . . . 4 ⊢ 1 ∈ V | |
5 | 3, 4 | fnsn 6107 | . . 3 ⊢ {〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} |
6 | c0ex 10226 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6252 | . . . 4 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
8 | ffn 6206 | . . . 4 ⊢ ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) |
10 | disjdif 4184 | . . . 4 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
11 | 3 | snid 4353 | . . . 4 ⊢ (𝐼 + 1) ∈ {(𝐼 + 1)} |
12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)}) |
13 | fvun1 6431 | . . 3 ⊢ (({〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})) → (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1))) | |
14 | 5, 9, 12, 13 | mp3an 1573 | . 2 ⊢ (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) |
15 | 3, 4 | fvsn 6610 | . 2 ⊢ ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) = 1 |
16 | 2, 14, 15 | 3eqtri 2786 | 1 ⊢ (𝑄‘(𝐼 + 1)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 ∪ cun 3713 ∩ cin 3714 ∅c0 4058 {csn 4321 〈cop 4327 × cxp 5264 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 + caddc 10131 ...cfz 12519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-mulcl 10190 ax-i2m1 10196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 |
This theorem is referenced by: axlowdimlem14 26034 axlowdimlem16 26036 |
Copyright terms: Public domain | W3C validator |