MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem12 Structured version   Visualization version   GIF version

Theorem axlowdimlem12 26739
Description: Lemma for axlowdim 26747. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem12 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)

Proof of Theorem axlowdimlem12
StepHypRef Expression
1 axlowdimlem10.1 . . 3 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21fveq1i 6671 . 2 (𝑄𝐾) = (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾)
3 eldifsn 4719 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)))
4 disjdif 4421 . . . . 5 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
5 ovex 7189 . . . . . . 7 (𝐼 + 1) ∈ V
6 1ex 10637 . . . . . . 7 1 ∈ V
75, 6fnsn 6412 . . . . . 6 {⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)}
8 c0ex 10635 . . . . . . . 8 0 ∈ V
98fconst 6565 . . . . . . 7 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
10 ffn 6514 . . . . . . 7 ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})
12 fvun2 6755 . . . . . 6 (({⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
137, 11, 12mp3an12 1447 . . . . 5 ((({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)})) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
144, 13mpan 688 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
158fvconst2 6966 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2856 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
173, 16sylbir 237 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
182, 17syl5eq 2868 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3933  cun 3934  cin 3935  c0 4291  {csn 4567  cop 4573   × cxp 5553   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-mulcl 10599  ax-i2m1 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159
This theorem is referenced by:  axlowdimlem14  26741  axlowdimlem16  26743  axlowdimlem17  26744
  Copyright terms: Public domain W3C validator