MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem12 Structured version   Visualization version   GIF version

Theorem axlowdimlem12 25733
Description: Lemma for axlowdim 25741. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem12 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)

Proof of Theorem axlowdimlem12
StepHypRef Expression
1 axlowdimlem10.1 . . 3 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21fveq1i 6149 . 2 (𝑄𝐾) = (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾)
3 eldifsn 4287 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)))
4 disjdif 4012 . . . . 5 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
5 ovex 6632 . . . . . . 7 (𝐼 + 1) ∈ V
6 1ex 9979 . . . . . . 7 1 ∈ V
75, 6fnsn 5904 . . . . . 6 {⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)}
8 c0ex 9978 . . . . . . . 8 0 ∈ V
98fconst 6048 . . . . . . 7 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
10 ffn 6002 . . . . . . 7 ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})
12 fvun2 6227 . . . . . 6 (({⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
137, 11, 12mp3an12 1411 . . . . 5 ((({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)})) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
144, 13mpan 705 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
158fvconst2 6423 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2655 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
173, 16sylbir 225 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
182, 17syl5eq 2667 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3552  cun 3553  cin 3554  c0 3891  {csn 4148  cop 4154   × cxp 5072   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-mulcl 9942  ax-i2m1 9948
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607
This theorem is referenced by:  axlowdimlem14  25735  axlowdimlem16  25737  axlowdimlem17  25738
  Copyright terms: Public domain W3C validator