MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem13 Structured version   Visualization version   GIF version

Theorem axlowdimlem13 25734
Description: Lemma for axlowdim 25741. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem13.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem13.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem13 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)

Proof of Theorem axlowdimlem13
StepHypRef Expression
1 2ne0 11057 . . . . . . . . 9 2 ≠ 0
21neii 2792 . . . . . . . 8 ¬ 2 = 0
3 eqcom 2628 . . . . . . . . 9 (2 = 0 ↔ 0 = 2)
4 1pneg1e0 11073 . . . . . . . . . . 11 (1 + -1) = 0
54eqcomi 2630 . . . . . . . . . 10 0 = (1 + -1)
6 df-2 11023 . . . . . . . . . 10 2 = (1 + 1)
75, 6eqeq12i 2635 . . . . . . . . 9 (0 = 2 ↔ (1 + -1) = (1 + 1))
8 ax-1cn 9938 . . . . . . . . . 10 1 ∈ ℂ
9 neg1cn 11068 . . . . . . . . . 10 -1 ∈ ℂ
108, 9, 8addcani 10173 . . . . . . . . 9 ((1 + -1) = (1 + 1) ↔ -1 = 1)
113, 7, 103bitri 286 . . . . . . . 8 (2 = 0 ↔ -1 = 1)
122, 11mtbi 312 . . . . . . 7 ¬ -1 = 1
1312intnanr 960 . . . . . 6 ¬ (-1 = 1 ∧ 0 = 0)
14 ax-1ne0 9949 . . . . . . . . 9 1 ≠ 0
1514neii 2792 . . . . . . . 8 ¬ 1 = 0
16 negeq0 10279 . . . . . . . . 9 (1 ∈ ℂ → (1 = 0 ↔ -1 = 0))
178, 16ax-mp 5 . . . . . . . 8 (1 = 0 ↔ -1 = 0)
1815, 17mtbi 312 . . . . . . 7 ¬ -1 = 0
1918intnanr 960 . . . . . 6 ¬ (-1 = 0 ∧ 0 = 1)
2013, 19pm3.2ni 898 . . . . 5 ¬ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1))
21 negex 10223 . . . . . 6 -1 ∈ V
22 c0ex 9978 . . . . . 6 0 ∈ V
23 1ex 9979 . . . . . 6 1 ∈ V
2421, 22, 23, 22preq12b 4350 . . . . 5 ({-1, 0} = {1, 0} ↔ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1)))
2520, 24mtbir 313 . . . 4 ¬ {-1, 0} = {1, 0}
26 3ex 11040 . . . . . . . . 9 3 ∈ V
2726rnsnop 5575 . . . . . . . 8 ran {⟨3, -1⟩} = {-1}
2827a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨3, -1⟩} = {-1})
29 elnnuz 11668 . . . . . . . . . . . 12 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
30 eluzfz1 12290 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
3129, 30sylbi 207 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
32 df-3 11024 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
33 1e0p1 11496 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
3432, 33eqeq12i 2635 . . . . . . . . . . . . . . 15 (3 = 1 ↔ (2 + 1) = (0 + 1))
35 2cn 11035 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
36 0cn 9976 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
3735, 36, 8addcan2i 10174 . . . . . . . . . . . . . . 15 ((2 + 1) = (0 + 1) ↔ 2 = 0)
3834, 37bitri 264 . . . . . . . . . . . . . 14 (3 = 1 ↔ 2 = 0)
3938necon3bii 2842 . . . . . . . . . . . . 13 (3 ≠ 1 ↔ 2 ≠ 0)
401, 39mpbir 221 . . . . . . . . . . . 12 3 ≠ 1
4140necomi 2844 . . . . . . . . . . 11 1 ≠ 3
4231, 41jctir 560 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
43 eldifsn 4287 . . . . . . . . . 10 (1 ∈ ((1...𝑁) ∖ {3}) ↔ (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
4442, 43sylibr 224 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ((1...𝑁) ∖ {3}))
4544adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ((1...𝑁) ∖ {3}))
46 ne0i 3897 . . . . . . . 8 (1 ∈ ((1...𝑁) ∖ {3}) → ((1...𝑁) ∖ {3}) ≠ ∅)
47 rnxp 5523 . . . . . . . 8 (((1...𝑁) ∖ {3}) ≠ ∅ → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4845, 46, 473syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4928, 48uneq12d 3746 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0})) = ({-1} ∪ {0}))
50 rnun 5500 . . . . . 6 ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0}))
51 df-pr 4151 . . . . . 6 {-1, 0} = ({-1} ∪ {0})
5249, 50, 513eqtr4g 2680 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = {-1, 0})
53 ovex 6632 . . . . . . . . 9 (𝐼 + 1) ∈ V
5453rnsnop 5575 . . . . . . . 8 ran {⟨(𝐼 + 1), 1⟩} = {1}
5554a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨(𝐼 + 1), 1⟩} = {1})
56 nnz 11343 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzssp1 12326 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
58 zcn 11326 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
59 npcan1 10399 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6059oveq2d 6620 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6158, 60syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6257, 61syl5sseq 3632 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6356, 62syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6463sselda 3583 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ (1...𝑁))
65 elfzelz 12284 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
6665zred 11426 . . . . . . . . . . 11 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
67 id 22 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
68 ltp1 10805 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
6967, 68ltned 10117 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ≠ (𝐼 + 1))
7066, 69syl 17 . . . . . . . . . 10 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≠ (𝐼 + 1))
7170adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≠ (𝐼 + 1))
72 eldifsn 4287 . . . . . . . . 9 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐼 ∈ (1...𝑁) ∧ 𝐼 ≠ (𝐼 + 1)))
7364, 71, 72sylanbrc 697 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))
74 ne0i 3897 . . . . . . . 8 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅)
75 rnxp 5523 . . . . . . . 8 (((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅ → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7673, 74, 753syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7755, 76uneq12d 3746 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = ({1} ∪ {0}))
78 rnun 5500 . . . . . 6 ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
79 df-pr 4151 . . . . . 6 {1, 0} = ({1} ∪ {0})
8077, 78, 793eqtr4g 2680 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = {1, 0})
8152, 80eqeq12d 2636 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ↔ {-1, 0} = {1, 0}))
8225, 81mtbiri 317 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
83 rneq 5311 . . 3 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8482, 83nsyl 135 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
85 axlowdimlem13.1 . . . 4 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
86 axlowdimlem13.2 . . . 4 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
8785, 86eqeq12i 2635 . . 3 (𝑃 = 𝑄 ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8887necon3abii 2836 . 2 (𝑃𝑄 ↔ ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8984, 88sylibr 224 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3552  cun 3553  wss 3555  c0 3891  {csn 4148  {cpr 4150  cop 4154   × cxp 5072  ran crn 5075  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210  -cneg 10211  cn 10964  2c2 11014  3c3 11015  cz 11321  cuz 11631  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  axlowdimlem15  25736
  Copyright terms: Public domain W3C validator