MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulgt0 Structured version   Visualization version   GIF version

Theorem axmulgt0 10715
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 10614 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 10614 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
2 0re 10643 . . . 4 0 ∈ ℝ
3 ltxrlt 10711 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
42, 3mpan 688 . . 3 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
5 ltxrlt 10711 . . . 4 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ 0 < 𝐵))
62, 5mpan 688 . . 3 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ 0 < 𝐵))
74, 6bi2anan9 637 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
8 remulcl 10622 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
9 ltxrlt 10711 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐴 · 𝐵)))
102, 8, 9sylancr 589 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐴 · 𝐵)))
111, 7, 103imtr4d 296 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537   < cltrr 10541   · cmul 10542   < clt 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-addrcl 10598  ax-mulrcl 10600  ax-rnegex 10608  ax-cnre 10610  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680
This theorem is referenced by:  mulgt0  10718  mulgt0i  10772  sin02gt0  15545  sinq12gt0  25093
  Copyright terms: Public domain W3C validator