![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayimaon | Structured version Visualization version GIF version |
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
Ref | Expression |
---|---|
bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 32130 | . . . . . 6 ⊢ bday : No –onto→On | |
2 | fofun 6273 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday |
4 | funimaexg 6132 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
5 | 3, 4 | mpan 708 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) |
6 | uniexg 7116 | . . . 4 ⊢ (( bday “ 𝐴) ∈ V → ∪ ( bday “ 𝐴) ∈ V) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) |
8 | imassrn 5631 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
9 | forn 6275 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
10 | 1, 9 | ax-mp 5 | . . . . 5 ⊢ ran bday = On |
11 | 8, 10 | sseqtri 3774 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On |
12 | ssorduni 7146 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) |
14 | 7, 13 | jctil 561 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) |
15 | elon2 5891 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
16 | sucelon 7178 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
17 | 15, 16 | bitr3i 266 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) |
18 | 14, 17 | sylib 208 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 Vcvv 3336 ⊆ wss 3711 ∪ cuni 4584 ran crn 5263 “ cima 5265 Ord word 5879 Oncon0 5880 suc csuc 5882 Fun wfun 6039 –onto→wfo 6043 No csur 32095 bday cbday 32097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-ord 5883 df-on 5884 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-1o 7725 df-no 32098 df-bday 32100 |
This theorem is referenced by: noetalem1 32165 |
Copyright terms: Public domain | W3C validator |