Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayimaon Structured version   Visualization version   GIF version

Theorem bdayimaon 33204
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.)
Assertion
Ref Expression
bdayimaon (𝐴𝑉 → suc ( bday 𝐴) ∈ On)

Proof of Theorem bdayimaon
StepHypRef Expression
1 bdayfo 33189 . . . . . 6 bday : No onto→On
2 fofun 6577 . . . . . 6 ( bday : No onto→On → Fun bday )
31, 2ax-mp 5 . . . . 5 Fun bday
4 funimaexg 6426 . . . . 5 ((Fun bday 𝐴𝑉) → ( bday 𝐴) ∈ V)
53, 4mpan 688 . . . 4 (𝐴𝑉 → ( bday 𝐴) ∈ V)
65uniexd 7454 . . 3 (𝐴𝑉 ( bday 𝐴) ∈ V)
7 imassrn 5926 . . . . 5 ( bday 𝐴) ⊆ ran bday
8 forn 6579 . . . . . 6 ( bday : No onto→On → ran bday = On)
91, 8ax-mp 5 . . . . 5 ran bday = On
107, 9sseqtri 3991 . . . 4 ( bday 𝐴) ⊆ On
11 ssorduni 7486 . . . 4 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
1210, 11ax-mp 5 . . 3 Ord ( bday 𝐴)
136, 12jctil 522 . 2 (𝐴𝑉 → (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
14 elon2 6188 . . 3 ( ( bday 𝐴) ∈ On ↔ (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
15 sucelon 7518 . . 3 ( ( bday 𝐴) ∈ On ↔ suc ( bday 𝐴) ∈ On)
1614, 15bitr3i 279 . 2 ((Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V) ↔ suc ( bday 𝐴) ∈ On)
1713, 16sylib 220 1 (𝐴𝑉 → suc ( bday 𝐴) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3486  wss 3924   cuni 4824  ran crn 5542  cima 5544  Ord word 6176  Oncon0 6177  suc csuc 6179  Fun wfun 6335  ontowfo 6339   No csur 33154   bday cbday 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-ord 6180  df-on 6181  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-1o 8088  df-no 33157  df-bday 33159
This theorem is referenced by:  noetalem1  33224
  Copyright terms: Public domain W3C validator