MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomg Structured version   Visualization version   GIF version

Theorem brdomg 7910
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq2 6056 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
21exbidv 1852 . . . 4 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
3 f1eq3 6057 . . . . 5 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
43exbidv 1852 . . . 4 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
5 df-dom 7902 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
62, 4, 5brabg 4959 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
76ex 450 . 2 (𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
8 reldom 7906 . . . . 5 Rel ≼
98brrelexi 5123 . . . 4 (𝐴𝐵𝐴 ∈ V)
10 f1f 6060 . . . . . 6 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
11 fdm 6010 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
12 vex 3194 . . . . . . . 8 𝑓 ∈ V
1312dmex 7047 . . . . . . 7 dom 𝑓 ∈ V
1411, 13syl6eqelr 2713 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
1510, 14syl 17 . . . . 5 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
1615exlimiv 1860 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
179, 16pm5.21ni 367 . . 3 𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1817a1d 25 . 2 𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
197, 18pm2.61i 176 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1480  wex 1701  wcel 1992  Vcvv 3191   class class class wbr 4618  dom cdm 5079  wf 5846  1-1wf1 5847  cdom 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090  df-fn 5853  df-f 5854  df-f1 5855  df-dom 7902
This theorem is referenced by:  brdomi  7911  brdom  7912  f1dom2g  7918  f1domg  7920  dom3d  7942  domdifsn  7988  fidomtri  8764  hashdom  13105  hashge3el3dif  13201  sizusglecusg  26240  erdsze2lem1  30885
  Copyright terms: Public domain W3C validator