MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge3el3dif Structured version   Visualization version   GIF version

Theorem hashge3el3dif 13206
Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 13200, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
hashge3el3dif ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem hashge3el3dif
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0nep0 4796 . . . . . . . . 9 ∅ ≠ {∅}
2 0ex 4750 . . . . . . . . . . . 12 ∅ ∈ V
32sneqr 4339 . . . . . . . . . . 11 ({∅} = {{∅}} → ∅ = {∅})
43necon3i 2822 . . . . . . . . . 10 (∅ ≠ {∅} → {∅} ≠ {{∅}})
51, 4ax-mp 5 . . . . . . . . 9 {∅} ≠ {{∅}}
6 snex 4869 . . . . . . . . . 10 {∅} ∈ V
7 snnzg 4278 . . . . . . . . . 10 ({∅} ∈ V → {{∅}} ≠ ∅)
86, 7ax-mp 5 . . . . . . . . 9 {{∅}} ≠ ∅
91, 5, 83pm3.2i 1237 . . . . . . . 8 (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅)
10 snex 4869 . . . . . . . . . 10 {{∅}} ∈ V
112, 6, 103pm3.2i 1237 . . . . . . . . 9 (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)
12 hashtpg 13205 . . . . . . . . 9 ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (#‘{∅, {∅}, {{∅}}}) = 3))
1311, 12ax-mp 5 . . . . . . . 8 ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (#‘{∅, {∅}, {{∅}}}) = 3)
149, 13mpbi 220 . . . . . . 7 (#‘{∅, {∅}, {{∅}}}) = 3
1514eqcomi 2630 . . . . . 6 3 = (#‘{∅, {∅}, {{∅}}})
1615a1i 11 . . . . 5 (𝐷𝑉 → 3 = (#‘{∅, {∅}, {{∅}}}))
1716breq1d 4623 . . . 4 (𝐷𝑉 → (3 ≤ (#‘𝐷) ↔ (#‘{∅, {∅}, {{∅}}}) ≤ (#‘𝐷)))
18 tpfi 8180 . . . . 5 {∅, {∅}, {{∅}}} ∈ Fin
19 hashdom 13108 . . . . 5 (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷𝑉) → ((#‘{∅, {∅}, {{∅}}}) ≤ (#‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2018, 19mpan 705 . . . 4 (𝐷𝑉 → ((#‘{∅, {∅}, {{∅}}}) ≤ (#‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2117, 20bitrd 268 . . 3 (𝐷𝑉 → (3 ≤ (#‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
22 brdomg 7909 . . . 4 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷))
2311a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V))
247necomd 2845 . . . . . . . . . . 11 ({∅} ∈ V → ∅ ≠ {{∅}})
256, 24ax-mp 5 . . . . . . . . . 10 ∅ ≠ {{∅}}
261, 25, 53pm3.2i 1237 . . . . . . . . 9 (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})
2726a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}))
28 simpr 477 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷)
2923, 27, 28f1dom3el3dif 6480 . . . . . . 7 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
3029expcom 451 . . . . . 6 (𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3130exlimiv 1855 . . . . 5 (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3231com12 32 . . . 4 (𝐷𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3322, 32sylbid 230 . . 3 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3421, 33sylbid 230 . 2 (𝐷𝑉 → (3 ≤ (#‘𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3534imp 445 1 ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  c0 3891  {csn 4148  {ctp 4152   class class class wbr 4613  1-1wf1 5844  cfv 5847  cdom 7897  Fincfn 7899  cle 10019  3c3 11015  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058
This theorem is referenced by:  pmtr3ncom  17816
  Copyright terms: Public domain W3C validator