MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge3el3dif Structured version   Visualization version   GIF version

Theorem hashge3el3dif 13845
Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 13839, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
hashge3el3dif ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem hashge3el3dif
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0nep0 5258 . . . . . . . . 9 ∅ ≠ {∅}
2 0ex 5211 . . . . . . . . . . . 12 ∅ ∈ V
32sneqr 4771 . . . . . . . . . . 11 ({∅} = {{∅}} → ∅ = {∅})
43necon3i 3048 . . . . . . . . . 10 (∅ ≠ {∅} → {∅} ≠ {{∅}})
51, 4ax-mp 5 . . . . . . . . 9 {∅} ≠ {{∅}}
6 snex 5332 . . . . . . . . . 10 {∅} ∈ V
7 snnzg 4710 . . . . . . . . . 10 ({∅} ∈ V → {{∅}} ≠ ∅)
86, 7ax-mp 5 . . . . . . . . 9 {{∅}} ≠ ∅
91, 5, 83pm3.2i 1335 . . . . . . . 8 (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅)
10 snex 5332 . . . . . . . . . 10 {{∅}} ∈ V
112, 6, 103pm3.2i 1335 . . . . . . . . 9 (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)
12 hashtpg 13844 . . . . . . . . 9 ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3))
1311, 12ax-mp 5 . . . . . . . 8 ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3)
149, 13mpbi 232 . . . . . . 7 (♯‘{∅, {∅}, {{∅}}}) = 3
1514eqcomi 2830 . . . . . 6 3 = (♯‘{∅, {∅}, {{∅}}})
1615a1i 11 . . . . 5 (𝐷𝑉 → 3 = (♯‘{∅, {∅}, {{∅}}}))
1716breq1d 5076 . . . 4 (𝐷𝑉 → (3 ≤ (♯‘𝐷) ↔ (♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷)))
18 tpfi 8794 . . . . 5 {∅, {∅}, {{∅}}} ∈ Fin
19 hashdom 13741 . . . . 5 (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷𝑉) → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2018, 19mpan 688 . . . 4 (𝐷𝑉 → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2117, 20bitrd 281 . . 3 (𝐷𝑉 → (3 ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
22 brdomg 8519 . . . 4 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷))
2311a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V))
247necomd 3071 . . . . . . . . . . 11 ({∅} ∈ V → ∅ ≠ {{∅}})
256, 24ax-mp 5 . . . . . . . . . 10 ∅ ≠ {{∅}}
261, 25, 53pm3.2i 1335 . . . . . . . . 9 (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})
2726a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}))
28 simpr 487 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷)
2923, 27, 28f1dom3el3dif 7027 . . . . . . 7 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
3029expcom 416 . . . . . 6 (𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3130exlimiv 1931 . . . . 5 (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3231com12 32 . . . 4 (𝐷𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3322, 32sylbid 242 . . 3 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3421, 33sylbid 242 . 2 (𝐷𝑉 → (3 ≤ (♯‘𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3534imp 409 1 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  c0 4291  {csn 4567  {ctp 4571   class class class wbr 5066  1-1wf1 6352  cfv 6355  cdom 8507  Fincfn 8509  cle 10676  3c3 11694  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by:  pmtr3ncom  18603
  Copyright terms: Public domain W3C validator