![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf11 | Structured version Visualization version GIF version |
Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
curf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf1.k | ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
curf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
curf11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curfval.g | . . . 4 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
2 | curfval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curfval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
8 | curf1.k | . . . 4 ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) | |
9 | eqid 2651 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | eqid 2651 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 16912 | . . 3 ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
12 | fvex 6239 | . . . . . 6 ⊢ (Base‘𝐷) ∈ V | |
13 | 6, 12 | eqeltri 2726 | . . . . 5 ⊢ 𝐵 ∈ V |
14 | 13 | mptex 6527 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
15 | 13, 13 | mpt2ex 7292 | . . . 4 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V |
16 | 14, 15 | op1std 7220 | . . 3 ⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
17 | 11, 16 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
18 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
19 | 18 | oveq2d 6706 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → (𝑋(1st ‘𝐹)𝑦) = (𝑋(1st ‘𝐹)𝑌)) |
20 | curf11.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | ovexd 6720 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝐹)𝑌) ∈ V) | |
22 | 17, 19, 20, 21 | fvmptd 6327 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 2nd c2nd 7209 Basecbs 15904 Hom chom 15999 Catccat 16372 Idccid 16373 Func cfunc 16561 ×c cxpc 16855 curryF ccurf 16897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-curf 16901 |
This theorem is referenced by: curf1cl 16915 curf2cl 16918 curfcl 16919 uncfcurf 16926 diag11 16930 yon11 16951 |
Copyright terms: Public domain | W3C validator |