Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Visualization version   GIF version

Theorem dicopelval 35967
 Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicelval.f 𝐹 ∈ V
dicelval.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 35966 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
98eleq2d 2684 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ ⟨𝐹, 𝑆⟩ ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)}))
10 dicelval.f . . 3 𝐹 ∈ V
11 dicelval.s . . 3 𝑆 ∈ V
12 eqeq1 2625 . . . 4 (𝑓 = 𝐹 → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1312anbi1d 740 . . 3 (𝑓 = 𝐹 → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) ↔ (𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
14 fveq1 6149 . . . . 5 (𝑠 = 𝑆 → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1514eqeq2d 2631 . . . 4 (𝑠 = 𝑆 → (𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
16 eleq1 2686 . . . 4 (𝑠 = 𝑆 → (𝑠𝐸𝑆𝐸))
1715, 16anbi12d 746 . . 3 (𝑠 = 𝑆 → ((𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
1810, 11, 13, 17opelopab 4959 . 2 (⟨𝐹, 𝑆⟩ ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸))
199, 18syl6bb 276 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ⟨cop 4156   class class class wbr 4615  {copab 4674  ‘cfv 5849  ℩crio 6567  lecple 15872  occoc 15873  Atomscatm 34051  LHypclh 34771  LTrncltrn 34888  TEndoctendo 35541  DIsoCcdic 35962 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-dic 35963 This theorem is referenced by:  dicopelval2  35971  dicvaddcl  35980  dicvscacl  35981  dicn0  35982
 Copyright terms: Public domain W3C validator