Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Visualization version   GIF version

Theorem dicopelval 38328
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicelval.f 𝐹 ∈ V
dicelval.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 38327 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
98eleq2d 2898 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ ⟨𝐹, 𝑆⟩ ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)}))
10 dicelval.f . . 3 𝐹 ∈ V
11 dicelval.s . . 3 𝑆 ∈ V
12 eqeq1 2825 . . . 4 (𝑓 = 𝐹 → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1312anbi1d 631 . . 3 (𝑓 = 𝐹 → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) ↔ (𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
14 fveq1 6669 . . . . 5 (𝑠 = 𝑆 → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1514eqeq2d 2832 . . . 4 (𝑠 = 𝑆 → (𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
16 eleq1 2900 . . . 4 (𝑠 = 𝑆 → (𝑠𝐸𝑆𝐸))
1715, 16anbi12d 632 . . 3 (𝑠 = 𝑆 → ((𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
1810, 11, 13, 17opelopab 5429 . 2 (⟨𝐹, 𝑆⟩ ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸))
199, 18syl6bb 289 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cop 4573   class class class wbr 5066  {copab 5128  cfv 6355  crio 7113  lecple 16572  occoc 16573  Atomscatm 36414  LHypclh 37135  LTrncltrn 37252  TEndoctendo 37903  DIsoCcdic 38323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-dic 38324
This theorem is referenced by:  dicopelval2  38332  dicvaddcl  38341  dicvscacl  38342  dicn0  38343
  Copyright terms: Public domain W3C validator