Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 38342
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l = (le‘𝐾)
dicvscacl.a 𝐴 = (Atoms‘𝐾)
dicvscacl.h 𝐻 = (LHyp‘𝐾)
dicvscacl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicvscacl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvscacl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvscacl.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑋𝐸)
3 dicvscacl.l . . . . . . . 8 = (le‘𝐾)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoC‘𝐾)‘𝑊)
7 dicvscacl.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2821 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
93, 4, 5, 6, 7, 8dicssdvh 38337 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
10 eqid 2821 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
125, 10, 11, 7, 8dvhvbase 38238 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸))
1312eqcomd 2827 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
1413adantr 483 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
159, 14sseqtrrd 4008 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
16153adant3 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
17 simp3r 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1816, 17sseldd 3968 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))
19 dicvscacl.s . . . . 5 · = ( ·𝑠𝑈)
205, 10, 11, 7, 19dvhvsca 38252 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐸𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
211, 2, 18, 20syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
22 fvi 6740 . . . . . 6 (𝑋𝐸 → ( I ‘𝑋) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ( I ‘𝑋) = 𝑋)
2423coeq1d 5732 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) = (𝑋 ∘ (2nd𝑌)))
2524opeq2d 4810 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
2621, 25eqtr4d 2859 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩)
27 eqid 2821 . . . . . . . 8 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
283, 4, 5, 27, 10, 6dicelval1sta 38338 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
29283adant3l 1176 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
3029fveq2d 6674 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 38340 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ 𝐸)
32313adant3l 1176 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ 𝐸)
335, 10, 11tendof 37914 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑌) ∈ 𝐸) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
341, 32, 33syl2anc 586 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
35 eqid 2821 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
363, 35, 4, 5lhpocnel 37169 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
37363ad2ant1 1129 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
38 simp2 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
39 eqid 2821 . . . . . . . 8 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 37730 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
411, 37, 38, 40syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
42 fvco3 6760 . . . . . 6 (((2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4334, 41, 42syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4430, 43eqtr4d 2859 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4524fveq1d 6672 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4644, 45eqtr4d 2859 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
475, 11tendococl 37923 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐸 ∧ (2nd𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
4924, 48eqeltrd 2913 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)
50 fvex 6683 . . . . 5 (𝑋‘(1st𝑌)) ∈ V
51 fvex 6683 . . . . . 6 ( I ‘𝑋) ∈ V
52 fvex 6683 . . . . . 6 (2nd𝑌) ∈ V
5351, 52coex 7635 . . . . 5 (( I ‘𝑋) ∘ (2nd𝑌)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 38328 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
55543adant3 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
5646, 49, 55mpbir2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄))
5726, 56eqeltrd 2913 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  cop 4573   class class class wbr 5066   I cid 5459   × cxp 5553  ccom 5559  wf 6351  cfv 6355  crio 7113  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Basecbs 16483   ·𝑠 cvsca 16569  lecple 16572  occoc 16573  Atomscatm 36414  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  TEndoctendo 37903  DVecHcdvh 38229  DIsoCcdic 38323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-sca 16581  df-vsca 16582  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906  df-dvech 38230  df-dic 38324
This theorem is referenced by:  diclss  38344
  Copyright terms: Public domain W3C validator