Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihfval Structured version   Visualization version   GIF version

Theorem dihfval 37040
Description: Isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝑥,𝐾   𝑥,𝐵   𝑢,𝑆   𝑊,𝑞,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑥,𝑢,𝑞)   𝐷(𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   𝑆(𝑥,𝑞)   𝑈(𝑥,𝑢,𝑞)   𝐻(𝑥,𝑢,𝑞)   𝐼(𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   𝑉(𝑥,𝑢,𝑞)

Proof of Theorem dihfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dihval.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
2 dihval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dihval.l . . . . 5 = (le‘𝐾)
4 dihval.j . . . . 5 = (join‘𝐾)
5 dihval.m . . . . 5 = (meet‘𝐾)
6 dihval.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 dihval.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7dihffval 37039 . . . 4 (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
98fveq1d 6355 . . 3 (𝐾𝑉 → ((DIsoH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊))
101, 9syl5eq 2806 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊))
11 breq2 4808 . . . . 5 (𝑤 = 𝑊 → (𝑥 𝑤𝑥 𝑊))
12 fveq2 6353 . . . . . . 7 (𝑤 = 𝑊 → ((DIsoB‘𝐾)‘𝑤) = ((DIsoB‘𝐾)‘𝑊))
13 dihval.d . . . . . . 7 𝐷 = ((DIsoB‘𝐾)‘𝑊)
1412, 13syl6eqr 2812 . . . . . 6 (𝑤 = 𝑊 → ((DIsoB‘𝐾)‘𝑤) = 𝐷)
1514fveq1d 6355 . . . . 5 (𝑤 = 𝑊 → (((DIsoB‘𝐾)‘𝑤)‘𝑥) = (𝐷𝑥))
16 fveq2 6353 . . . . . . . . 9 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
17 dihval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
1816, 17syl6eqr 2812 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
1918fveq2d 6357 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = (LSubSp‘𝑈))
20 dihval.s . . . . . . 7 𝑆 = (LSubSp‘𝑈)
2119, 20syl6eqr 2812 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
22 breq2 4808 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑞 𝑤𝑞 𝑊))
2322notbid 307 . . . . . . . . 9 (𝑤 = 𝑊 → (¬ 𝑞 𝑤 ↔ ¬ 𝑞 𝑊))
24 oveq2 6822 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑥 𝑤) = (𝑥 𝑊))
2524oveq2d 6830 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑞 (𝑥 𝑤)) = (𝑞 (𝑥 𝑊)))
2625eqeq1d 2762 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑞 (𝑥 𝑤)) = 𝑥 ↔ (𝑞 (𝑥 𝑊)) = 𝑥))
2723, 26anbi12d 749 . . . . . . . 8 (𝑤 = 𝑊 → ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) ↔ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥)))
2818fveq2d 6357 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSSum‘((DVecH‘𝐾)‘𝑤)) = (LSSum‘𝑈))
29 dihval.p . . . . . . . . . . 11 = (LSSum‘𝑈)
3028, 29syl6eqr 2812 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSSum‘((DVecH‘𝐾)‘𝑤)) = )
31 fveq2 6353 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((DIsoC‘𝐾)‘𝑤) = ((DIsoC‘𝐾)‘𝑊))
32 dihval.c . . . . . . . . . . . 12 𝐶 = ((DIsoC‘𝐾)‘𝑊)
3331, 32syl6eqr 2812 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((DIsoC‘𝐾)‘𝑤) = 𝐶)
3433fveq1d 6355 . . . . . . . . . 10 (𝑤 = 𝑊 → (((DIsoC‘𝐾)‘𝑤)‘𝑞) = (𝐶𝑞))
3514, 24fveq12d 6359 . . . . . . . . . 10 (𝑤 = 𝑊 → (((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)) = (𝐷‘(𝑥 𝑊)))
3630, 34, 35oveq123d 6835 . . . . . . . . 9 (𝑤 = 𝑊 → ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))) = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))
3736eqeq2d 2770 . . . . . . . 8 (𝑤 = 𝑊 → (𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))) ↔ 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))
3827, 37imbi12d 333 . . . . . . 7 (𝑤 = 𝑊 → (((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))) ↔ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
3938ralbidv 3124 . . . . . 6 (𝑤 = 𝑊 → (∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
4021, 39riotaeqbidv 6778 . . . . 5 (𝑤 = 𝑊 → (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
4111, 15, 40ifbieq12d 4257 . . . 4 (𝑤 = 𝑊 → if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))) = if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))
4241mpteq2dv 4897 . . 3 (𝑤 = 𝑊 → (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
43 eqid 2760 . . 3 (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))
44 fvex 6363 . . . . 5 (Base‘𝐾) ∈ V
452, 44eqeltri 2835 . . . 4 𝐵 ∈ V
4645mptex 6651 . . 3 (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))) ∈ V
4742, 43, 46fvmpt 6445 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
4810, 47sylan9eq 2814 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  crio 6774  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  meetcmee 17166  LSSumclsm 18269  LSubSpclss 19154  Atomscatm 35071  LHypclh 35791  DVecHcdvh 36887  DIsoBcdib 36947  DIsoCcdic 36981  DIsoHcdih 37037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-dih 37038
This theorem is referenced by:  dihval  37041  dihf11lem  37075
  Copyright terms: Public domain W3C validator