MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnlocfin Structured version   Visualization version   GIF version

Theorem dissnlocfin 22137
Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
dissnlocfin (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑉,𝑥   𝑢,𝑋,𝑥

Proof of Theorem dissnlocfin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21603 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 eqidd 2822 . 2 (𝑋𝑉𝑋 = 𝑋)
3 snelpwi 5337 . . . . 5 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
43adantl 484 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑧} ∈ 𝒫 𝑋)
5 vsnid 4602 . . . . 5 𝑧 ∈ {𝑧}
65a1i 11 . . . 4 ((𝑋𝑉𝑧𝑋) → 𝑧 ∈ {𝑧})
7 nfv 1915 . . . . . 6 𝑢(𝑋𝑉𝑧𝑋)
8 nfrab1 3384 . . . . . 6 𝑢{𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅}
9 nfcv 2977 . . . . . 6 𝑢{{𝑧}}
10 dissnref.c . . . . . . . . . 10 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
1110abeq2i 2948 . . . . . . . . 9 (𝑢𝐶 ↔ ∃𝑥𝑋 𝑢 = {𝑥})
1211anbi1i 625 . . . . . . . 8 ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
13 simpr 487 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥})
14 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → 𝑢 = {𝑥})
1514ineq1d 4188 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ({𝑥} ∩ {𝑧}))
16 disjsn2 4648 . . . . . . . . . . . . . . . . . 18 (𝑥𝑧 → ({𝑥} ∩ {𝑧}) = ∅)
1716adantl 484 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ({𝑥} ∩ {𝑧}) = ∅)
1815, 17eqtrd 2856 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) = ∅)
19 simp-4r 782 . . . . . . . . . . . . . . . . 17 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → (𝑢 ∩ {𝑧}) ≠ ∅)
2019neneqd 3021 . . . . . . . . . . . . . . . 16 ((((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) ∧ 𝑥𝑧) → ¬ (𝑢 ∩ {𝑧}) = ∅)
2118, 20pm2.65da 815 . . . . . . . . . . . . . . 15 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → ¬ 𝑥𝑧)
22 nne 3020 . . . . . . . . . . . . . . 15 𝑥𝑧𝑥 = 𝑧)
2321, 22sylib 220 . . . . . . . . . . . . . 14 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑥 = 𝑧)
2423sneqd 4579 . . . . . . . . . . . . 13 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → {𝑥} = {𝑧})
2513, 24eqtrd 2856 . . . . . . . . . . . 12 (((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ 𝑥𝑋) ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2625r19.29an 3288 . . . . . . . . . . 11 ((((𝑋𝑉𝑧𝑋) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) → 𝑢 = {𝑧})
2726an32s 650 . . . . . . . . . 10 ((((𝑋𝑉𝑧𝑋) ∧ ∃𝑥𝑋 𝑢 = {𝑥}) ∧ (𝑢 ∩ {𝑧}) ≠ ∅) → 𝑢 = {𝑧})
2827anasss 469 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅)) → 𝑢 = {𝑧})
29 sneq 4577 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029rspceeqv 3638 . . . . . . . . . . 11 ((𝑧𝑋𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
3130adantll 712 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → ∃𝑥𝑋 𝑢 = {𝑥})
32 simpr 487 . . . . . . . . . . . . 13 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → 𝑢 = {𝑧})
3332ineq1d 4188 . . . . . . . . . . . 12 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = ({𝑧} ∩ {𝑧}))
34 inidm 4195 . . . . . . . . . . . 12 ({𝑧} ∩ {𝑧}) = {𝑧}
3533, 34syl6eq 2872 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) = {𝑧})
36 vex 3497 . . . . . . . . . . . . 13 𝑧 ∈ V
3736snnz 4711 . . . . . . . . . . . 12 {𝑧} ≠ ∅
3837a1i 11 . . . . . . . . . . 11 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → {𝑧} ≠ ∅)
3935, 38eqnetrd 3083 . . . . . . . . . 10 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (𝑢 ∩ {𝑧}) ≠ ∅)
4031, 39jca 514 . . . . . . . . 9 (((𝑋𝑉𝑧𝑋) ∧ 𝑢 = {𝑧}) → (∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
4128, 40impbida 799 . . . . . . . 8 ((𝑋𝑉𝑧𝑋) → ((∃𝑥𝑋 𝑢 = {𝑥} ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
4212, 41syl5bb 285 . . . . . . 7 ((𝑋𝑉𝑧𝑋) → ((𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅) ↔ 𝑢 = {𝑧}))
43 rabid 3378 . . . . . . 7 (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ (𝑢𝐶 ∧ (𝑢 ∩ {𝑧}) ≠ ∅))
44 velsn 4583 . . . . . . 7 (𝑢 ∈ {{𝑧}} ↔ 𝑢 = {𝑧})
4542, 43, 443bitr4g 316 . . . . . 6 ((𝑋𝑉𝑧𝑋) → (𝑢 ∈ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ↔ 𝑢 ∈ {{𝑧}}))
467, 8, 9, 45eqrd 3986 . . . . 5 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} = {{𝑧}})
47 snfi 8594 . . . . 5 {{𝑧}} ∈ Fin
4846, 47eqeltrdi 2921 . . . 4 ((𝑋𝑉𝑧𝑋) → {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)
49 eleq2 2901 . . . . . 6 (𝑦 = {𝑧} → (𝑧𝑦𝑧 ∈ {𝑧}))
50 ineq2 4183 . . . . . . . . 9 (𝑦 = {𝑧} → (𝑢𝑦) = (𝑢 ∩ {𝑧}))
5150neeq1d 3075 . . . . . . . 8 (𝑦 = {𝑧} → ((𝑢𝑦) ≠ ∅ ↔ (𝑢 ∩ {𝑧}) ≠ ∅))
5251rabbidv 3480 . . . . . . 7 (𝑦 = {𝑧} → {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} = {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅})
5352eleq1d 2897 . . . . . 6 (𝑦 = {𝑧} → ({𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin ↔ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin))
5449, 53anbi12d 632 . . . . 5 (𝑦 = {𝑧} → ((𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin) ↔ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)))
5554rspcev 3623 . . . 4 (({𝑧} ∈ 𝒫 𝑋 ∧ (𝑧 ∈ {𝑧} ∧ {𝑢𝐶 ∣ (𝑢 ∩ {𝑧}) ≠ ∅} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
564, 6, 48, 55syl12anc 834 . . 3 ((𝑋𝑉𝑧𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
5756ralrimiva 3182 . 2 (𝑋𝑉 → ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin))
58 unipw 5343 . . . 4 𝒫 𝑋 = 𝑋
5958eqcomi 2830 . . 3 𝑋 = 𝒫 𝑋
6010unisngl 22135 . . 3 𝑋 = 𝐶
6159, 60islocfin 22125 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀𝑧𝑋𝑦 ∈ 𝒫 𝑋(𝑧𝑦 ∧ {𝑢𝐶 ∣ (𝑢𝑦) ≠ ∅} ∈ Fin)))
621, 2, 57, 61syl3anbrc 1339 1 (𝑋𝑉𝐶 ∈ (LocFin‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  {crab 3142  cin 3935  c0 4291  𝒫 cpw 4539  {csn 4567   cuni 4838  cfv 6355  Fincfn 8509  Topctop 21501  LocFinclocfin 22112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-en 8510  df-fin 8513  df-top 21502  df-locfin 22115
This theorem is referenced by:  dispcmp  31123
  Copyright terms: Public domain W3C validator