Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjfval Structured version   Visualization version   GIF version

Theorem dpjfval 18448
 Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjfval.q 𝑄 = (proj1𝐺)
Assertion
Ref Expression
dpjfval (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
Distinct variable groups:   𝑖,𝐺   𝜑,𝑖   𝑖,𝐼   𝑆,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑄(𝑖)

Proof of Theorem dpjfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjfval.p . 2 𝑃 = (𝐺dProj𝑆)
2 df-dpj 18389 . . . 4 dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
32a1i 11 . . 3 (𝜑 → dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))))
4 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑠 = 𝑆)
54dmeqd 5324 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = dom 𝑆)
6 dpjfval.2 . . . . . 6 (𝜑 → dom 𝑆 = 𝐼)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑆 = 𝐼)
85, 7eqtrd 2655 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → dom 𝑠 = 𝐼)
9 simprl 794 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → 𝑔 = 𝐺)
109fveq2d 6193 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = (proj1𝐺))
11 dpjfval.q . . . . . 6 𝑄 = (proj1𝐺)
1210, 11syl6eqr 2673 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (proj1𝑔) = 𝑄)
134fveq1d 6191 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠𝑖) = (𝑆𝑖))
148difeq1d 3725 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (dom 𝑠 ∖ {𝑖}) = (𝐼 ∖ {𝑖}))
154, 14reseq12d 5395 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑠 ↾ (dom 𝑠 ∖ {𝑖})) = (𝑆 ↾ (𝐼 ∖ {𝑖})))
169, 15oveq12d 6665 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))
1712, 13, 16oveq123d 6668 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))) = ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))
188, 17mpteq12dv 4731 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
19 simpr 477 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
2019sneqd 4187 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑔} = {𝐺})
2120imaeq2d 5464 . . 3 ((𝜑𝑔 = 𝐺) → (dom DProd “ {𝑔}) = (dom DProd “ {𝐺}))
22 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
23 dprdgrp 18398 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
2422, 23syl 17 . . 3 (𝜑𝐺 ∈ Grp)
25 reldmdprd 18390 . . . . 5 Rel dom DProd
26 elrelimasn 5487 . . . . 5 (Rel dom DProd → (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆))
2725, 26ax-mp 5 . . . 4 (𝑆 ∈ (dom DProd “ {𝐺}) ↔ 𝐺dom DProd 𝑆)
2822, 27sylibr 224 . . 3 (𝜑𝑆 ∈ (dom DProd “ {𝐺}))
2922, 6dprddomcld 18394 . . . 4 (𝜑𝐼 ∈ V)
30 mptexg 6481 . . . 4 (𝐼 ∈ V → (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))) ∈ V)
3129, 30syl 17 . . 3 (𝜑 → (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))) ∈ V)
323, 18, 21, 24, 28, 31ovmpt2dx 6784 . 2 (𝜑 → (𝐺dProj𝑆) = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
331, 32syl5eq 2667 1 (𝜑𝑃 = (𝑖𝐼 ↦ ((𝑆𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖}))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1482   ∈ wcel 1989  Vcvv 3198   ∖ cdif 3569  {csn 4175   class class class wbr 4651   ↦ cmpt 4727  dom cdm 5112   ↾ cres 5114   “ cima 5115  Rel wrel 5117  ‘cfv 5886  (class class class)co 6647   ↦ cmpt2 6649  Grpcgrp 17416  proj1cpj1 18044   DProd cdprd 18386  dProjcdpj 18387 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-ixp 7906  df-dprd 18388  df-dpj 18389 This theorem is referenced by:  dpjval  18449
 Copyright terms: Public domain W3C validator