Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapclsntr Structured version   Visualization version   GIF version

Theorem dssmapclsntr 40499
Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 32454. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapclsntr (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapclsntr
StepHypRef Expression
1 dssmapclsntr.x . . . . 5 𝑋 = 𝐽
2 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
3 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
4 dssmapclsntr.o . . . . 5 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
5 dssmapclsntr.d . . . . 5 𝐷 = (𝑂𝑋)
61, 2, 3, 4, 5dssmapntrcls 40498 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
76eqcomd 2827 . . 3 (𝐽 ∈ Top → (𝐷𝐾) = 𝐼)
81topopn 21514 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
94, 5, 8dssmapf1od 40387 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋))
101, 2clselmap 40497 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
11 f1ocnvfv 7035 . . . 4 ((𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋)) → ((𝐷𝐾) = 𝐼 → (𝐷𝐼) = 𝐾))
129, 10, 11syl2anc 586 . . 3 (𝐽 ∈ Top → ((𝐷𝐾) = 𝐼 → (𝐷𝐼) = 𝐾))
137, 12mpd 15 . 2 (𝐽 ∈ Top → (𝐷𝐼) = 𝐾)
144, 5, 8dssmapnvod 40386 . . 3 (𝐽 ∈ Top → 𝐷 = 𝐷)
1514fveq1d 6672 . 2 (𝐽 ∈ Top → (𝐷𝐼) = (𝐷𝐼))
1613, 15eqtr3d 2858 1 (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3494  cdif 3933  𝒫 cpw 4539   cuni 4838  cmpt 5146  ccnv 5554  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  m cmap 8406  Topctop 21501  intcnt 21625  clsccl 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-top 21502  df-cld 21627  df-ntr 21628  df-cls 21629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator